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CHAPTER

ONE

INTRODUCTION

1.1 Hydra framework

Despite the ongoing efforts of modernization, a large fraction of the software used in HEP
remain based on legacy. It mostly consists of libraries assembling single threaded, Fortran and
C++03 mono-platform routines [1]. Concomitantly, HEP experiments keep collecting samples
with unprecedented large statistics and data analyses become increasingly complex. Are not
rare the situations where computers spend days performing calculations to reach a result, which
very often needs re-tune.

On the other hand, computer processors will not increase clock frequency any more in order to
reach higher performance. Indeed, the current road-map to improve overall performance is to
deploy different levels of concurrency, which for example has been leading to the proliferation
of multi-thread friendly and multi-platform environments among HPC data-centers. Unfortu-
nately, HEP software is not completely prepared yet to fully exploit concurrency and to deploy
more opportunistic computing strategies.

The Hydra framework proposes a computing model to approach these issues. The Hydra pro-
vides collection of parallelized high-level algorithms, addressing some of of typical computing
bottlenecks commonly found in HEP, and a set of optimized containers and types, through a
modern and functional interface, allowing to enhance HEP software productivity and perfor-
mance and at same time keeping the portability between NVidia GPUs, multi-core CPUs and
other devices compatible with CUDA [2], TBB [3] and OpenMP [4] computing models.

1.2 Design highlights

Hydra is basically a header-only C++11 template framework organized using a variety of static
polymorphism idioms and patterns. This ensure the predictability of the stack at compile time,
which is critical for stability and performance when running on GPUs and minimizes the over-
head introduced by the user interface when engaging the actual calculations. Furthermore, the
implementation of static polymorphism via extensive usage of templates allows to expose the
maximum amount of code to the compiler, in the context in which the code will be used, con-
tributing to activate many compile time optimizations that could not be accessible otherwise.
Hydra’s interface and implementation details extensively deploys patterns and idioms that en-
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force thread-safeness and efficient in memory access and management. The following list sum-
marizes some of the main design choices adopted in Hydra:

• Hydra provides a set of optimized STL-like containers that can store multidimensional
datasets using [5] layout.

• Data handled using iterators and all classes manages resources using RAII idiom.

• The framework is type and thread-safe.

• There is no limitation on the maximum number of dimensions that containers and algo-
rithms can handle.

The types of devices which Hydra can be deployed are classified by back-end type, accord-
ing with the device compatibility with certain computing models. Currently, Hydra supports
four back-ends, which are CPP [6], OpenMP [4], CUDA [2] and TBB [3]. Code can be
dispatched and executed in all supported back-ends concurrently and asynchronously in the
same program, using the suitable policies represented by the symbols hydra::omp::sys
, hydra::cuda::sys, hydra::tbb::sys, hydra::cpp::sys , hydra::host::sys and
hydra::device::sys. Where applicable, these policies define the memory space where re-
sources should be allocated to run algorithms and store data.

For mono-backend applications, source files written using Hydra and standard C++ compile for
GPU and CPU just exchanging the extension from .cu to .cpp and one or two compiler flags.
So, basically, there is no need to refractory code to deploy different back-ends.

1.3 Basic features

Currently, Hydra provides collection of parallelized high-level algorithms, addressing some
computing-intensive tasks commonly found in data analyses in HEP. The available high-level
algorithms are listed below,

• Interface to Minuit2 minimization package [7], allowing to accelerate maximum likeli-
hood fits over multidimensional large data-sets.

• Parallel implementation of the SPlot technique, a very popular procedure for statistical
unfolding of data distributions [8] .

• Phase-space Monte Carlo generation, integration and modeling.

• Multidimensional p.d.f. sampling.

• Parallel function evaluation on multidimensional data-sets.

• Five fully parallelized numerical integration algorithms: Genz-Malik [9, 10], self-
adaptive and static Gauss-Kronrod quadratures, plain, self-adaptive importance sampling
and phase-space Monte Carlo integration.

2 Chapter 1. Introduction
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1.4 How does this manual is organized?

By the time it was written, this manual covers the usage of most of the Hydra features. This
manual was written to be read sequentially. The sections are organized by subject and are sorted
to make available the functionality described in a given section usable in the next parts.

1.4. How does this manual is organized? 3
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CHAPTER

TWO

FUNCTORS AND C++ LAMBDAS.

The user’s code is passed to Hydra’s algorithms through functors and C++ lambdas. Hydra
then adds type information and functionality to functors and lambdas using CRTP. Functors
and lambdas are not attached to a specific back-end. The signatures conventions adopted for
functors and lambdas as well as the added functionality will be discussed in the following lines.

2.1 Functors

In C++, a functor, sometimes also referred as a function object, is any class or structure that over-
loads the function call operator òperator()(Args ...x). In Hydra, all functors derives from
the class template hydra::BaseFunctor<Functor, Signature, NParameters>. The
template parameters are described below:

• Functor : the type of the functor.

• Signature: a type representing the signature of function call operaror. Ex: void(double,
double).

• NParameters: the number of parameters the functor takes.

The user needs to implement the method Evaluate(...) and Hydra will take care of imple-
menting the function call operator. To see how this works, it is convenient to give a look at the
implementation of the hydra::Gaussian functor:

//Template parameters: //ArgType: the argument type. In this way, this
also supports static named variables //Signature: whatever type it gets, the
functor will return a double //Third parameter: 2 is the number of pa-
rameters a Gaussian takes (mean and width) template<typename ArgType,
typename Signature=double(ArgType) > class Gaussian: public BaseFunc-
tor<Gaussian<ArgType>, Signature, 2> {

//import the parameters acessor _par using BaseFunc-
tor<Gaussian<ArgType>, Signature, 2>::_par;

public: //all members callable from host and device side //making sure
that Gaussians always have a defined mean and sigma Gaussian()=delete;

5
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//constructors should also forward the parameters to BaseFunctor Gaus-
sian(Parameter const& mean, Parameter const& sigma ):

BaseFunctor<Gaussian<ArgType>, Signature, 2>({mean,
sigma}) {}

__hydra_host__ __hydra_device__ Gaussian(Gaussian<ArgType>
const& other ):

BaseFunctor<Gaussian<ArgType>, Signature, 2>(other) {}

//operaror= should be always implemented __hydra_host__ __hy-
dra_device__ Gaussian<ArgType>& operator=(Gaussian<ArgType>
const& other ) {

if(this==&other) return *this; BaseFunc-
tor<Gaussian<ArgType>, Signature, 2>::operator=(other);
return *this;

}

//implement the evaluate method, where actual value of the functor for
//its current parameters is calculated. //CHECK_VALUE macro veri-
fies the value and prints information in case of failure or NAN __hy-
dra_host__ __hydra_device__ inline double Evaluate(ArgType x) const
{

double m2 = ( x - _par[0])*(x - _par[0] ); double s2 =
_par[1]*_par[1]; return CHECK_VALUE( ::exp(-m2/(2.0 * s2
)), “par[0]=%f, par[1]=%f”, _par[0], _par[1]);

}

};

Functors implemented in that fashion can deal with statically named variables and be optimized
when fitting datasets.

Hydra provides a growing set of native functors, which are available in hydra/functions
folder.

2.2 C++ Lambdas

Hydra supports C++ lambdas. Before to pass C++ lambdas to Hydra’s algorithms, users
need to wrap it into a suitable Hydra object. This is done invoking the function template
hydra::wrap_lambda(...). Currently, lambdas with auto arguments are not supported.
Parametric lambdas, with or without named arguments are supported, though.

auto multiply_by_two = hydra::wrap_lambda(
[=] __hydra_dual__ ( double x){

return 2.0*x;
(continues on next page)

6 Chapter 2. Functors and C++ lambdas.
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(continued from previous page)

}
) ;

Hydra can also handle “parametric lambdas”. Parametric lambdas are wrapped lambdas that can
hold named parameters (hydra::Parameters objecs). The signatures for parametric lambdas
are:

// mean auto mean = hydra::Parameter::Create()

.Name(“Mean_X”) .Value(0.0) .Error(0.0001) .Limits(-1.0, 1.0);

// sigma auto sigma = hydra::Parameter::Create()

.Name(“Sigma_X”) .Value(2.0) .Error(0.0001) .Limits(0.1, 3.0);

auto gaussian = hydra::wrap_lambda(
[=] __hydra_dual__ (unsigned int npar, const hydra::Parameter* params, dou-
ble x ) {

double mean = params[0].GetValue(); double sigma = params[1].GetValue();

double m2 = (X - mean ); m2 *= m2; double s2 = sigma*sigma;

return ::exp(-m2/(2.0 * s2 ))/( ::sqrt(2.0*s2*PI));

}, mean, sigma);

2.2. C++ Lambdas 7
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CHAPTER

THREE

CONTAINERS

Hydra framework provides an one-dimensional STL-like vector container for each supported
back-end, aliasing the underlying Thrust types. The framework also implements two native
multidimensional containers called hydra::multivector`` and hydra::multiarray .

In these containers, the data corresponding to each dimension is stored in contigu-
ous memory addresses that can be traversed in a CPU/GPU cache friendly way,
independently of the other dimensions. In the case of multidimensional containers,
when the data is traversed each entry is accessed as

a hydra::tuple object, where each field holds a value corresponding to a dimension.

3.1 One-dimensional containers

Hydra’s one-dimensional containers are aliases to the corresponding [Thrust] vectors and are
defined for each supported back-end. They are:

1. hydra::device::vector : storage allocated in the device back-end defined at compile
time using the macro HYDRA_DEVICE_SYSTEM

2. hydra::host::vector : storage allocated in the device back-end defined at compile
time using the macro HYDRA_HOST_SYSTEM

3. hydra::omp::vector : storage allocated in the [OpenMP] back-end. Usually the CPU
memory space.

4. hydra::tbb::vector : storage allocated in the [TBB] back-end. Usually the CPU
memory space.

5. hydra::cuda::vector : storage allocated in the [CUDA] back-end. The GPU memory
space.

6. hydra::cpp::vector : storage allocated in the [CPP] back-end. Usually the CPU mem-
ory

The usage of these containers is extensively documented in STL and [Thrust] library. Hydra
also implements range-semantics for many of these containers.

9
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3.2 Multi-dimensional containers

Hydra implements two multidimensional containers:hydra::multivector and
hydra::multiarray. These containers store data using [SoA] layout and provides a
STL-vector compliant interface.

Both classes provides constant and non-constant accessors for the single dimensional data. The
container hydra::multivector is suitable to store data-sets where the dimensions are repre-
sented by entries with different POD types. hydra::multiarray is designed to store data-sets
where all dimensions are represented by fields of the same type. Data is always copyable across
different back-ends and movable between containers on the same back-end.

The best way to understand how these containers operate is to visualize them as a table,
there each row corresponds to a entry and each column to a dimension. The design of
hydra::multivector and hydra::multiarray makes possible to iterate over the container
to access a complete row or to iterate over one or more columns to access only the data of interest
in a given entry, without loading the entire row.

When the user iterates over the whole container, each entry (row) is returned as a
hydra::tuple. If the user iterates over one single column, the entries have the type of the col-
umn. If two or more columns are accessed, entry’s data is returned as again as hydra::tuple
containing only the elements of interest. Hydra’s multi-dimensional containers can hold any
type of data per dimension, but there is not real gain using these containers for describing di-
mensions with non-POD or non alignable data.

These containers can store the state of arbitrary objects and perform type conversions on-the-fly,
using suitable overloaded iterators and push_back() methods.

3.2.1 hydra::multivector

hydra::multivector templates are instantiated passing the type list corresponding to each
dimension via a hydra::tuple and the back-end where memory will be allocated. The snippet
below show how to instantiate a hydra::multivector to store four-dimensional data, two
columns for integers and two columns for doubles:

#include <hydra/device/System.h>
#include<hydra/multivector.h>

...

hydra::multivector<hydra::tuple<int, int, double, double>,␣
→˓hydra::device::sys_t> mvector;

for(int i=0; i<10;i++){
mvector.push_back(hydra::make_tuple( i, 2*i, i, 2*i));

}

for(auto x:mvector) std::cout << x << std::endl;

10 Chapter 3. Containers
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this will print in stdout something like it :

(0, 0, 0.0, 0.0)
(1, 2, 1.0, 2.0)
(2, 4, 2.0, 4.0)
...
(9, 18, 9.0, 18.0)

To access the columns the user needs hydra::placeholders: _0, _1, _2,. . . , _99;

#include <hydra/device/System.h>
#include<hydra/multivector.h>
#include<hydra/Placeholders.h>

using namespace hydra::placeholders;

...

hydra::multivector<hydra::tuple<int, int, double, double>,␣
→˓hydra::device::sys_t> mvector;

for(int i=0; i<10;i++){
mvector.push_back(hydra::make_tuple( i, 2*i, i, 2*i));

}

for(auto x = mvector.begin(_1, _3);
x != mvector.end(_1, _3); ++x )

std::cout << *x << std::endl;

now in stdout the user will get:

(0, 0.0)
(2, 2.0)
(4, 4.0)
...
(18, 18.0)

Now suppose that one want to interpret the data stored in mvector as a pair of complex num-
bers, represented by the types hydra::complex<int> and hydra::complex<double>. It is
not necessary to access each field stored in each entry to perform a conversion invoking the
corresponding constructors. The next example shows how this can be accomplished in a more
elegant way using a lambda function:

#include <hydra/device/System.h>
#include<hydra/multivector.h>
#include<hydra/Complex.h>

(continues on next page)

3.2. Multi-dimensional containers 11
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(continued from previous page)

...

hydra::multivector<hydra::tuple<int, int, double, double>,␣
→˓hydra::device::sys_t> mvector;

for(int i=0; i<10;i++){
mvector.push_back(hydra::make_tuple( i, 2*i, i, 2*i));

}

auto caster = [] __host__ device__ ( hydra::tuple<int, int, double,
→˓ double>& entry )

{

hydra::complex<int> cint(hydra::get<0>(entry), hydra::get<1>
→˓(entry));

hydra::complex<double> cdouble(hydra::get<2>(entry), hydra::get<2>
→˓(entry));

return hydra::make_pair( cint, cdouble );
};

for(auto x = mvector.begin(caster); x != mvector.end(caster); x++ )
std::cout << *x << std::endl;

stdout will look like:

((0, 0), (0.0, 0.0))
((1, 2), (1.0, 2.0))
((2, 4), (2.0, 4.0))
...
((9, 18), (9.0, 18.0))

Same effect can be

hydra::multiarray

hydra::multiarray templates are instantiated passing the type and the number of dimensions
via and the back-end where memory will be allocated. The snippet below show how to instan-
tiate a hydra::multiarray to store four-dimensional data, two columns for integers and two
columns for doubles:

#include <hydra/device/System.h>
#include<hydra/multiarray.h>

...

hydra::multiarray<4, double, hydra::device::sys_t> marray;

(continues on next page)
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(continued from previous page)

for(int i=0; i<10;i++){
marray.push_back(hydra::make_tuple( i, 2*i, 4*i, 8*i));

}

for(auto x:marray) std::cout << x << std::endl;

this will print in stdout something like it :

(0.0, 0.0, 0.0, 0.0)
(1.0, 2.0, 4.0, 8.0)
(2.0, 4.0, 8.0, 16.0)
...
(9.0, 18.0, 36.0, 72.0)

To access the columns the user can deploy hydra::placeholders: _0, _1, _2. . . or use
unsigned it indexes.

#include <hydra/device/System.h>
#include<hydra/multiarray.h>
#include<hydra/Placeholders.h>

using namespace hydra::placeholders;

...

hydra::multiarray<4, double, hydra::device::sys_t> marray;

for(int i=0; i<10;i++){
marray.push_back(hydra::make_tuple( i, 2*i, i, 2*i));

}

for(auto x = marray.begin(_1, _3);
x != marray.end(_1, _3); x++ )

std::cout << *x << std::endl;

now in stdout the user will get:

(0.0, 0.0)
(2.0, 8.0)
(4.0, 16.0)
...
(18.0, 72.0)

Now suppose that one want to interpret the data stored in mvector as a pair of complex numbers,
represented by the types hydra::complex<double> and hydra::complex<double>. It is
not necessary to access each field stored in each entry to perform a conversion invoking the
corresponding constructors. The next example shows how this can be accomplished in a more
elegant way using a lambda function:

3.2. Multi-dimensional containers 13
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#include <hydra/device/System.h>
#include<hydra/multiarray.h>
#include<hydra/Complex.h>

...

hydra::multiarray<4, double, hydra::device::sys_t> marray;

for(int i=0; i<10;i++){
marray.push_back(hydra::make_tuple( i, 2*i, i, 2*i));

}

auto caster = [] __host__ device__ (hydra::tuple<double, double,␣
→˓double, double>& entry ){

hydra::complex<double> c1(hydra::get<0>(entry), hydra::get<1>
→˓(entry));

hydra::complex<double> c2(hydra::get<2>(entry), hydra::get<2>
→˓(entry));
return hydra::make_pair( c1, c2);

};

for(auto x = marray.begin(caster); x != marray.end(caster); x++ )
std::cout << *x << std::endl;

stdout will look like:

((0, 0), (0.0, 0.0))
((1, 2), (1.0, 2.0))
((2, 4), (2.0, 4.0))
...
((9, 18), (9.0, 18.0))

14 Chapter 3. Containers
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FOUR

HISTOGRAMS

Hydra implements two classes dedicated to calculate multidimensional histograms in parallel.
One class for dense histograms and other for sparse histograms. These classes provide only
the basic functionality to calculate the histogram using one of the supported parallel back-ends.
Once calculated, the histogram contents can be exported to external libraries, like ROOT, for
drawing etc.

The histograms classes does not process event-by-event. They takes iterators pointing to con-
tainers storing the data and process it at once. This approach is orders of magnitude more
efficient than iterate over the container and histogram in entry-by-entry basis.

4.1 Binning convention

In Hydra, a histogram with N bins is stored in a array with length N+2. In range contents are
indexed starting from 0 to N-1. Underflow contents are stored in bin N and overflow contents
are stored in bin N+1.

4.2 Global and dimensional binning

The histogram contents is organized in a linear array of length N+2, where N is total number
of bins, obtained multiplying the number of bins configured in for each dimension. The con-
version between global bin number and dimensional bin numbers is performed by the methods
GetBin(...) and GetIndexes(...), implemented in both classes. The internal indexing
convention used in Hydra in general does not match the one used in other libraries and inter-
faces. Users are advised to always export the histogram contents using the bin numbers per
bin.

15
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4.3 Dense histograms

Dense histograms store all bins, including ones with zero content. In Hydra, they are rep-
resented by the class hydra::DenseHistogram<Type, NDimensions, Backend>, where
NDimensions is the number of dimensions, Type is the type of the histogram’s values and
Backend is memory space where the histogram is allocated.

The code snippet below shows how to instantiate and fill a dense histogram in Hydra:

#include <hydra/device/System.h>
#include <hydra/multiarray.h>
#include <hydra/DenseHistogram.h>
#include <array>

...

hydra::multiarray<4, double, hydra::device::sys_t> mvector;

...
// fill mvector with the data of interest...
...

//histogram ranges
std::array<double, 4>max{ 1.0, 2.0, 3.0, 4.0};
std::array<double, 4>min{-1.0, -2.0, -3.0, -4.0};

//bins per dimension
std::array<size_t, 3> nbins{10, 20, 30, 40};

//create histogram
hydra::DenseHistogram<3, double> Histogram(nbins, min, max);

Histogram.Fill( mvector.begin(), mvector.end());

//getting bin content [0, 2, 3, 1]
Histogram.GetBinContent({0, 2, 3, 1});

4.4 Sparse histograms

Sparse histograms store only bins with non-zero content. In Hydra, they are represented by the
class hydra::SparseHistogram<Type, NDimensions, Backend>, where NDimensions
is the number of dimensions, Type is the type of the histogram’s values and Backend is memory
space where the histogram is allocated.

#include <hydra/device/System.h>
#include <hydra/multiarray.h>

(continues on next page)
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(continued from previous page)

#include <hydra/SparseHistogram.h>
#include <array>

...

hydra::multiarray<4, double, hydra::device::sys_t> mvector;

...
// fill mvector with the data of interest...
...

//histogram ranges
std::array<double, 4>max{ 1.0, 2.0, 3.0, 4.0};
std::array<double, 4>min{-1.0, -2.0, -3.0, -4.0};

//bins per dimension
std::array<size_t, 3> nbins{10, 20, 30, 40};

//create histogram
hydra::SparseHistogram<3, double> Histogram(nbins, min, max);

Histogram.Fill( mvector.begin(), mvector.end());

//getting bin content [0, 2, 3, 1]
Histogram.GetBinContent({0, 2, 3, 1});

4.4. Sparse histograms 17
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CHAPTER

FIVE

RANDOM NUMBER GENERATION AND PDF SAMPLING

The generation of random numbers and sampling of multidimensional PDFs is supported in
Hydra through the class hydra::Random<typename Engine>, where Engine is the random
number generator engine. The only argument of the hydra::Random constructor is the seed of
random number generator. There are four random number engines available

1. hydra::minstd_rand0: implements a version of the Minimal Standard random number
generation algorithm.

2. hydra::minstd_rand: implements a version of the Minimal Standard random number
generation algorithm.

3. hydra::ranlux24: RANLUX level-3 random number generation algorithm.

4. hydra::ranlux48: RANLUX level-4 random number generation algorithm.

5. hydra::taus88: L’Ecuyer’s 1996 three-component Tausworthe random number gener-
ator.

The default random number generation engine is hydra::minstd_rand0, which produces
pseudo-random numbers with quality appropriated for most applications. This class provides
methods that take iterators pointing to containers that will be filled with random numbers dis-
tributed according the requested distributions. If an explicit back-end policy is passed, the gener-
ation is parallelized in the corresponding back-end, otherwise the class will process the random
number generation in the back-end the containers is allocated.

5.1 Sampling basic distributions

hydra::Random defines four methods to generate predefined one-dimensional. These methods
are summarized below, where begin and end are iterators pointing to the range that will filled
with random numbers. The other parameters represent the standard definitions:

1. hydra::Random::Gauss( mean, sigma, begin, end) for Gaussian distribution.

2. hydra::Random::Exp(tau, begin, end) for exponential distribution.

3. hydra::Random::Uniform(min, max, begin, end) for an uniform distribution.

4. hydra::Random::BreitWigner(mean, width, begin, end) for non-relativistic
Breit-Wigner distribution.
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The example below show how to use these methods

#include <hydra/device/System.h>
#include <hydra/Random.h>

...

hydra::Random<> Generator(4598635);
hydra::device::vector<double> data(1e6);

//uniform distribution in the interval [-5,5]
Generator.Uniform(-5.0, 5.0, data.begin(), data.end());

//Gaussian distribion with mean=0 and sigma =1
Generator.Gauss(0.0, 1.0, data.begin(), data.end());

//exponential distribion with tau=1
Generator.Exp(1.0, data.begin(), data.end());

//Breit-Wigner with mean 2.0 width 0.2
Generator.BreitWigner(2.0, 0.2, data_d.begin(), data_d.end());

5.2 Multidimensional PDF sampling

The class hydra::Random also supports the sampling of multidimensional probability density
functions (PDF) through the method hydra::Random::Sample(begin, end, min, max,
functor), where min and max are static arrays or std::array objects representing the limits
of the multidimensional region. functor is a Hydra functor representing the PDF.

The PDFs are sampled using a parallel version of the accept-reject method. The
hdra::Random::Sample returns a hydra::GenericRange object pointing to a range
filled with the sampled numbers. The PDF sampling

is processed filling the container with random numbers and reordering it to reproduce the shape
of the PDF, no memory reallocation is performed during this process. The range returned by
the method points to a sub-set of the original container, the size of this range depends on the
efficiency of the accept-reject for the given PDF.

The code below shows how to sample a three-dimensional PDF

#include <hydra/device/System.h>
#include <hydra/Random.h>
#include <hydra/Lambda.h>

...

double mean = 0.0;
(continues on next page)
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double sigma = 1.0;

auto gaussian = hydra::wrap_lambda(
[=] __host__ __device__ (unsigned int n,double* x ){

double g = 1.0;

for(size_t i=0; i<3; i++){
double m2 = (x[i] - mean )*(x[i] - mean );
double s2 = sigma*sigma;
g *= exp(-m2/(2.0 * s2 ))/( sqrt(2.0*s2*PI));

}

return g;
}

);

std::array<double, 3> max{ 6.0, 6.0, 6.0};
std::array<double, 3> min{-6.0, -6.0, -6.0};

hydra::multiarray<3, double, hydra::device::sys_t> data;
auto range = Generator.Sample(data.begin(), data.end(), min, max,␣
→˓gaussian);

5.2. Multidimensional PDF sampling 21
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CHAPTER

SIX

PHASE-SPACE MONTE CARLO

Phase-Space Monte Carlo simulates the kinematics of a particle with a given four-momentum
decaying to a n-particle final state, without intermediate resonances. Samples of phase-space
Monte Carlo events are widely used in HEP studies where the calculation of phase-space volume
is required as well as a starting point to implement and describe the properties of models with
one or more resonances or even to simulate the response of the detector to decay’s products
[James].

Hydra provides an implementation of the Raubold-Lynch method [James] and can generate the
full kinematics of decays with any number of particles in the final state. Sequential decays,
evaluation of models, production of weighted and unweighted samples and many other features
are also supported.

6.1 Decays and decay chains

The four-vector of the generated final-state particles are stored in the dedicated vector-
like container hydra::Decays<N,BACKEND> where N is the number of particles in
the final state and BACKEND``is the memory space where allocate the storage.
``hydra::Decays<N,BACKEND> can be aggregated to describe sequential decays using
hydra::Chains<Decays...> objects.

Both classes are iterable, but the hydra::Chains<Decays...> container does not implement
a full vector-like interface. Pre-allocated hydra::Decays<N,BACKEND> can not be added to a
hydra::Chains<Decays...>.

6.2 Phase-space Monte Carlo generator.

The phase-space Monte Carlo generator is represented by the class hydra::PhaseSpace<N,
RNG>, where is the number of particles and RGN is underlying random number genera-
tor to be used. The constructor of the hydra::PhaseSpace takes as parameter an ar-
ray with the masses of the final state particles. The decays are generated invoking
the overloaded hydra::PhaseSpace::Generate(...) method. This method can take a
hydra::Vector4R, describing momentum of a only mother particle or iterators pointing for a
container storing a list of mother particles and the iterators pointing to the hydra::Decays<N,
BACKEND> container that will hold the generated final states. If an explicit policy policy is
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passed, the generation is parallelized in the corresponding back-end, otherwise the class will
process the random number generation in the back-end where the containers are allocated.

6.2.1 Generating one-level decays

The code below shows how to generate a sample of 20 million 𝐵0 → 𝐽/𝜓𝐾+𝜋− decays and
fill a Dalitz’s plot, i.e. a histogram 𝑀2(𝐽/𝜓𝜋−)𝑣𝑠𝑀2(𝐾+𝜋−):

#include <hydra/Types.h>
#include <hydra/Vector4R.h>
#include <hydra/PhaseSpace.h>
#include <hydra/device/System.h>
#include <hydra/Decays.h>

...

size_t nentries = 20e6; // number of events to generate
double B0_mass = 5.27955; // B0 mass
double Jpsi_mass = 3.0969; // J/psi mass
double K_mass = 0.493677; // K+ mass
double pi_mass = 0.13957061; // pi mass

// mother particle
hydra::Vector4R B0(B0_mass, 0.0, 0.0, 0.0);

// decays container
hydra::Decays<3, hydra::device::sys_t > Events(nentries);

hydra::PhaseSpace<3> phsp{Jpsi_mass, K_mass, pi_mass};

// generate the final state particles
phsp.Generate(B0, Events.begin(), Events.end());

// functor to calculate Dalitz variables
auto dalitz_calculator = hydra::wrap_lambda(

[=] __host__ __device__ (unsigned int np, hydra::Vector*␣
→˓particles){

hydra::Vector4R Jpsi = event[0];
hydra::Vector4R K = event[1];
hydra::Vector4R pi = event[2];

double M2_Jpsi_pi = (Jpsi + pi).mass2();
double M2_Kpi = (K + pi).mass2();

return hydra::make_tuple( M2_Jpsi_pi, M2_Kpi);
(continues on next page)
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}
);

//
auto particles = Events.GetUnweightedDecays();

// use an smart-range to calculate the Dalitz variables
// without have to store it. ;)
auto dalitz_variables = hydra::make_range( particles.begin(),␣
→˓particles.end(), dalitz_calculator);

// get the event's weights
auto dalitz_weights = Events.GetWeights();

// instantiate 2D histogram
hydra::DenseHistogram<2, double> Hist_Dalitz({100,100}, {pow(Jpsi_mass␣
→˓+ pi_mass,2), pow(K_mass + pi_mass,2)},

{pow(B0_mass - K_mass,2) , pow(B0_mass - Jpsi_mass,2)} );

//fill the histogram
Hist_Dalitz.Fill(dalitz_variables.begin(), dalitz_variables.end(),␣
→˓dalitz_weights.begin());

...

In the previous example, the user can foward the Hydra::DenseHistogram to ROOT and draw
it.

6.2.2 Generating sequential decays

The code below shows how to generate a sample of 20 million decay chains 𝐵0 → 𝐽/𝜓𝐾+𝜋−

with 𝐽/𝜓 → 𝜇+𝜇−.

The first step to process the decay chain is to the generate the decays 𝐵0 → 𝐽/𝜓𝐾+𝜋−, then
the list of 𝐽/𝜓 candidates is passed to the instance of hydra::PhaseSpace to generate the
𝐽/𝜓 → 𝜇+𝜇− corresponding to each 𝐽/𝜓 mother. Notice that the decay events stored in a
given chain are accessed using a hydra::placeholder.

#include <hydra/Types.h>
#include <hydra/Vector4R.h>
#include <hydra/PhaseSpace.h>
#include <hydra/device/System.h>
#include <hydra/Chains.h>
#include <hydra/Placeholders.h>

...
(continues on next page)
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using namespace hydra::placeholders;

...

size_t nentries = 20e6; // number of events to generate
double B0_mass = 5.27955; // B0 mass
double Jpsi_mass = 3.0969; // J/psi mass
double K_mass = 0.493677; // K+ mass
double pi_mass = 0.13957061; // pi mass
double mu_mass = 0.1056583745 ;// mu mass

// mother particle
hydra::Vector4R B0(B0_mass, 0.0, 0.0, 0.0);

// create PhaseSpace object for B0 -> K pi J/psi
hydra::PhaseSpace<3> phsp_B2JpsiKpi{Jpsi_mass, K_mass, pi_mass };

// create PhaseSpace object for J/psi -> mu+ mu-
hydra::PhaseSpace<2> phsp_Jpsi2mumu{mu_mass , mu_mass};

// allocate memory to hold the final states particles
auto Events = hydra::make_chain<3,2>(hydra::device::sys, nentries);

//generate the final state particles for B0 -> K pi J/psi
phsp_B2JpsiKpi.Generate(B0, Events.GetDecay(_0).begin(),

Events.GetDecay(_0).end());

//pass the list of J/psi to generate the final
//state particles for J/psi -> mu+ mu-
phsp_Jpsi2mumu.Generate(Events.GetDecay(_0).GetDaughters(0).begin(),

Events.GetDecay(_0).GetDaughters(0).end(),
Events.GetDecay(_1).begin());

6.3 Other features

The classes of the phase-space module provides many other functionality. The list below sum-
marizes some of them:

• Calculate the mean and the variance of a functor over a phase-space without the need to
generate and store events.

• Evaluate functors and stored the result without the need to generate and store events.

• Unweight and re-weight events stored in hydra::decay objects to match .
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• Access single particle’s Vector4R or its components of events stored in hydra::decay
objects and interact with it.

For brevity, the user is adivesed to look the doxygen documentation and the examples to learn
what is available and how to deploy it.
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CHAPTER

SEVEN

NUMERICAL INTEGRATION

Numerical integration of multidimensional functions is not easy. Numerical integration algo-
rithms tend to be involved and resource hungry, since they demand a large number of evaluations
of the integrand. Indeed, it is common to express the efficiency of a given algorithm in terms
of the minimum required number of integrand evaluations to achieve given precision for the
integral estimation.

The best strategy to perform numerical integration largely depends on the number of dimensions
of the integration region and on the features shown by the integrand in this region. Given the
detailed information about integrand behavior is usually not available, the numerical integration
algorithms need to handle situations specializing routines based on broad properties of the inte-
grand, such as the presence or the absence of narrow peaks, periodicity etc. Highly specialized
algorithms, optimized to handle only a given class of problems tend to be more efficient, but on
the other hand, such approaches are usually not applicable to different class of problems. In other
words, on the field of numerical integration, flexibility usually comes at expenses of efficiency.
The basics of numerical integration, followed by comprehensive list of references on the sub-
ject, can be found in the Wikipedia pages https://en.wikipedia.org/wiki/Numerical_integration
and https://en.wikipedia.org/wiki/Monte_Carlo_integration .

Hydra provides a set of parallelized implementations for generic and popular algorithms to
compute one- and multidimensional numerical integration. Hydra parallelizes the calls to the
integrand in a collection of threads in requested back-end. The algorithms share the same basic
interface, manage resources using RAII idiom and estimate the integral and the associated error.
Hydra also supports analytical integration, which should be implemented through functors.

7.1 Gauss-Kronrod quadrature

See also:
Good didactic introduction on Gauss-Kronrod quadrature can be found in the Wikipedia page
https://en.wikipedia.org/wiki/Gauss-Kronrod_quadrature_formula.

The class hydra::GaussKronrodQuadrature<NRULE, NBIN, Backend> imple-
ments a non-adaptive procedure which divides the integration interval in NBIN sub-
intervals and applies to each sub-interval a fixed Gauss-Kronrod rule of order NRULE.
hydra::GaussKronrodQuadrature<NRULE, NBIN, Backend> allows the fast integration
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of smooth one-dimensional functions. The code snippet below show how to use this quadrature
to calculate the integral of a Gaussian function:

#include <hydra/GaussKronrodQuadrature.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

...

//integration region limits
double min = -6.0;
double max = 6.0;

//Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//wrap the lambda
auto gaussian = hydra::wrap_lambda(
[=] __host__ __device__ (unsigned int n, double* x ){

double m2 = (x[0] - mean )*(x[0] - mean );
double s2 = sigma*sigma;
double f = exp(-m2/(2.0 * s2 ))/( sqrt(2.0*s2*PI));

return f;
} );

...

// 61- degree quadrature
hydra::GaussKronrodQuadrature<61,100, hydra::device::sys_t> GKQ61_
→˓d(min, max);

auto result = GKQ61_d.Integrate(gaussian);

std::cout << "Result: " << result.first << " +- " << result.second <
→˓<std::endl
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7.2 Self-Adaptive Gauss-Kronrod quadrature

See also:
Good didactic introduction on Gauss-Kronrod quadrature can be found in the Wikipedia page
https://en.wikipedia.org/wiki/Gauss-Kronrod_quadrature_formula.

The class hydra::GaussKronrodAdaptiveQuadrature<NRULE, NBIN, Backend> imple-
ments a self-adaptive algorithm which initially divides the integration interval in NBIN sub-
intervals and applies to each sub-interval a Gauss-Kronrod rule of order NRULE. The algorith
selects the interval with larger relative error in the integral estimation and re-applies the pro-
cedure. The algorithme keeps performing this loop until the integram estimation reaches the
requested maximum error level.

hydra::GaussKronrodQAdaptiveuadrature<NRULE, NBIN, Backend> performs less
calls to the integrand and is best suitable for very featured and expensive functions. The code
snippet below show how to use this quadrature to calculate the integral of a Gaussian function:

#include <hydra/GaussKronrodAdaptiveQuadrature.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

...

//integration region limits
double min = -6.0;
double max = 6.0;

double max_error = 1e-6;

//Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//wrap the lambda
auto gaussian = hydra::wrap_lambda(
[=] __host__ __device__ (unsigned int n, double* x ){

double m2 = (x[0] - mean )*(x[0] - mean );
double s2 = sigma*sigma;
double f = exp(-m2/(2.0 * s2 ))/( sqrt(2.0*s2*PI));

return f;
} );

...

// 61- degree quadrature
(continues on next page)

7.2. Self-Adaptive Gauss-Kronrod quadrature 31

https://en.wikipedia.org/wiki/Gauss-Kronrod_quadrature_formula


Hydra Documentation, Release 3.X.Y

(continued from previous page)

hydra::GaussKronrodQuadrature<61,10, hydra::device::sys_t>␣
→˓GKQ61(min, max, max_error);

auto result = GKQ61.Integrate(gaussian);

std::cout << "Result: " << result.first << " +- " << result.
→˓second <<std::endl

7.3 Genz-Malik multidimensional quadrature

This method implements a polynomial interpolatory rule of degree 7, which integrates exactly
all monomials 𝑥1𝑘1 , 𝑥2𝑘2 ...𝑥𝑛𝑘𝑑 with

∑︀
𝑘𝑖 ≤ 7 and fails to integrate exactly at least one mono-

mial of degree 8. In the [Genz-Malik] multidimensional quadrature, all integration nodes are
inside integration domain and 2𝑑 +2𝑑2 +2𝑑+1 integrand evaluations are required to integrate
a function in a rectangular hypercube with d dimensions. Due the fast increase in the number
of evaluations as a function of the dimension, this method is most advantageous for problems
with d < 10 and is superseded for high-dimensional integrals by Monte Carlo based methods.
A degree 5 rule embedded in the degree 7 rule is used for error estimation, in a such way that
no additional integrand evaluations are necessary.

The class template hydra::GenzMalikQuadrature<N, BackendPolicy > implements
a static version of Genz-Malik multidimensional quadrature. This version divides the
``N``dimensional integration region in a series of sub-regions, according the configuration,
passed by the user and applies the rule to each sub-region.

The code snippet below shows to use the hydra::GenzMalikQuadrature<N,
BackendPolicy > class to integrate a five-dimensional Gaussian distribution. In this
example each dimension is divided in 10 segments, resulting in 105 sub-regions.

#include <hydra/GaussKronrodAdaptiveQuadrature.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

...

//number of dimensions (user can change it)
constexpr size_t N = 5;

//integration region limits
double min[N];
double max[N];
size_t grid[N];

//5D Gaussian parameters
double mean = 0.0;

(continues on next page)
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double sigma = 1.0;

//set Gaussian parameters and
//integration region limits
for(size_t i=0; i< N; i++){

min[i] = -6.0;
max[i] = 6.0;
grid[10] = 10;

}

//wrap the lambda
auto gaussian = hydra::wrap_lambda( [=] __host__ __device__ (unsigned␣
→˓int n, double* x ){

double g = 1.0;
double f = 0.0;

for(size_t i=0; i<N; i++){

double m2 = (x[i] - mean )*(x[i] - mean );
double s2 = sigma*sigma;
f = exp(-m2/(2.0 * s2 ))/( sqrt(2.0*s2*PI));
g *= f;

}

return g;
});

hydra::GenzMalikQuadrature<N, hydra::device::sys_t> GMQ(min, max,␣
→˓grid);

auto result = GMQ.Integrate(gaussian);

std::cout << "Result: " << result.first << " +- " << result.second <
→˓<std::endl

7.4 Plain Monte Carlo

The plain Monte Carlo algorithm samples points randomly from the integration region to esti-
mate the integral and its error. Using this algorithm the estimate of the integral E(f; N) for N
randomly distributed points x_i is given by,

𝐸(𝑓 ;𝑁) = 𝑉 < 𝑓 >= (𝑉/𝑁)
𝑁∑︁
𝑖

𝑓(𝑥𝑖)
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where V is the volume of the integration region. The error on this estimate 𝜎(𝐸;𝑁) is calculated
from the estimated variance of the mean,

𝜎2(𝐸;𝑁) = (𝑉 2/𝑁2)
𝑁∑︁
𝑖

(𝑓(𝑥𝑖)− < 𝑓 >)2

For large N this variance decreases asymptotically as 𝑉 𝑎𝑟(𝑓)/𝑁 , where 𝑉 𝑎𝑟(𝑓) is the true
variance of the function over the integration region. The error estimate itself should decrease
as 𝜎(𝑓)/

√
𝑁 , which implies that to reduce the error by a factor of 10, a 100-fold increase in the

number of sample points is required.

Hydra implements the plain Monte Carlo method in the class hydra::Plain<N,
BackendPolicy>, where N is the number of dimensions and BackendPolicy is the back-end
to parallelize the calculation.

The following code snippet shows to use the hydra::Plain<N, BackendPolicy > class to
integrate a five-dimensional Gaussian distribution performing 100

#include <hydra/Lambda.h>
#include <hydra/device/System.h>
#include <hydra/Plain.h>

...

//number of dimensions (user can change it)
constexpr size_t N = 5;

//integration region limits
double min[N];
double max[N];
size_t ncalls = 1e6;

//5D Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//set Gaussian parameters and
//integration region limits
for(size_t i=0; i< N; i++){

min[i] = -6.0;
max[i] = 6.0;

}

//wrap the lambda
auto gaussian = hydra::wrap_lambda( [=] __host__ __device__ (unsigned␣
→˓int n, double* x ){

double g = 1.0;
double f = 0.0;

(continues on next page)
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for(size_t i=0; i<N; i++){

double m2 = (x[i] - mean )*(x[i] - mean );
double s2 = sigma*sigma;
f = exp(-m2/(2.0 * s2 ))/( sqrt(2.0*s2*PI));
g *= f;

}

return g;
});

hydra::Plain<N, hydra::device::sys_t> PlainMC(min, max, ncalls);

auto result = PlainMC.Integrate(gaussian);

std::cout << "Result: " << result.first << " +- " << result.second <
→˓<std::endl

7.5 Self-adaptive importance sampling (Vegas)

Note: from GSL’s Manual, chapter ‘Monte Carlo integration’ https://www.gnu.org/software/
gsl/manual/html_node/VEGAS.html :

The VEGAS algorithm of [Lepage] is based on importance sampling. It samples
points from the probability distribution described by the function |𝑓 |, so that the
points are concentrated in the regions that make the largest contribution to the in-
tegral.

In general, if the Monte Carlo integral of f is sampled with points distributed accord-
ing to a probability distribution described by the function g, we obtain an estimate
𝐸𝑔(𝑓 ;𝑁),

𝐸𝑔(𝑓 ;𝑁) = 𝐸(𝑓/𝑔;𝑁)

with a corresponding variance,

𝑉 𝑎𝑟𝑔(𝑓 ;𝑁) = 𝑉 𝑎𝑟(𝑓/𝑔;𝑁).

If the probability distribution is chosen as 𝑔 = |𝑓 |/𝐼(|𝑓 |) then it can be shown that
the variance {Var}_g(f; N) vanishes, and the error in the estimate will be zero. In
practice it is not possible to sample from the exact distribution g for an arbitrary
function, so importance sampling algorithms aim to produce efficient approxima-
tions to the desired distribution.
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The VEGAS algorithm approximates the exact distribution by making a number of
passes over the integration region while histogramming the function f. Each his-
togram is used to define a sampling distribution for the next pass. Asymptotically
this procedure converges to the desired distribution. In order to avoid the number
of histogram bins growing like K^d the probability distribution is approximated by
a separable function: 𝑔(𝑥1, 𝑥2, ...) = 𝑔1(𝑥1)𝑔2(𝑥2)... so that the number of bins re-
quired is only 𝐾𝑑. This is equivalent to locating the peaks of the function from the
projections of the integrand onto the coordinate axes. The efficiency of VEGAS
depends on the validity of this assumption. It is most efficient when the peaks of
the integrand are well-localized. If an integrand can be rewritten in a form which
is approximately separable this will increase the efficiency of integration with VE-
GAS.

. . .

The implementation of VEGAS in Hydra parallelizes the Monte Carlo generation, the func-
tion calls and the computing of the result of each iteration. The algorithm is implemented
in the hydra::Vegas<N, BackendPolicy>. The auxiliary class hydra::VegasState<N,
BackendPolicy> manages the resources and configuration necessary to perform the inte-
gration. The code snippet below shows how to use the VEGAS algorithm to integrate five-
dimensional Gaussian distribution:

#include <hydra/Vegas.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

...

//number of dimensions (user can change it)
constexpr size_t N = 5;

//integration region limits
double min[N];
double max[N];
size_t ncalls = 1e5;

//5D Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//set Gaussian parameters and
//integration region limits
for(size_t i=0; i< N; i++){

min[i] = -6.0;
max[i] = 6.0;

}

(continues on next page)
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//wrap the lambda
auto gaussian = hydra::wrap_lambda(

[=] __host__ __device__ (unsigned int n, double* x ){

double g = 1.0;
double f = 0.0;

for(size_t i=0; i<N; i++){

double m2 = (x[i] - mean )*(x[i] -␣
→˓mean );

double s2 = sigma*sigma;
f = exp(-m2/(2.0 * s2 ))/( sqrt(2.

→˓0*s2*PI));
g *= f;

}

return g;
}

);

//vegas integrator
hydra::Vegas<N, hydra::device::sys_t> Vegas(min, max,␣
→˓ncalls);

//configuration
Vegas.GetState().SetVerbose(-2);
Vegas.GetState().SetAlpha(1.5);
Vegas.GetState().SetIterations( iterations );
Vegas.GetState().SetUseRelativeError(1);
Vegas.GetState().SetMaxError( max_error );
Vegas.GetState().SetCalls( calls );
Vegas.GetState().SetTrainingCalls( calls/10 );
Vegas.GetState().SetTrainingIterations(2);

auto result = Vegas_d.Integrate(gaussian);
std::cout << "Result: " << result.first << " +- " << result.
→˓second <<std::endl

7.5. Self-adaptive importance sampling (Vegas) 37



Hydra Documentation, Release 3.X.Y

7.6 Implementing analytical integration

Hydra supports analysical integration as well. To integrate functions analytically the user
needs to implement the integral formula in a suitable functor Functor deriving from the class
hydra::Integrator<Functor>. Analytical integration is not parallelized.
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The best Minuit description can be found on it’s own user’s manual [7] :

Minuit is conceived as a tool to find the minimum value of a multi-parameter func-
tion, usually called “FCN”, and analyze the shape of this function around the min-
imum. The principal application is foreseen for statistical analysis, working on
chi-square or log-likelihood functions, to compute the best-fit parameter values
and uncertain- ties, including correlations between the parameters. It is especially
suited to handle difficult problems, including those which may require guidance in
order to find the correct solution.

—Minuit User’s Guide, Fred James and Matthias Winkler, June 16, 2004 - CERN,
Geneva.

Hydra implements an interface to Minuit2 that parallelizes the FCN calculation. This dramati-
cally accelerates the calculations over large or multidimensional datasets. Hydra normalizes the
pdfs on-the-fly using analytical

or numerical integration algorithms provided by the framework and handles data
using iterators. Hydra supports weigted and unweigted datasets.

Hydra also provides an implementation of SPlot [8], a very popular technique for statistical
unfolding of data distributions.

8.1 Defining PDFs

In Hydra, PDFs are represented by the hydra::Pdf<Functor, Integrator> class
template and are defined binding a positive defined functor

and a integrator. PDFs can be conveniently built using the template function

hydra::make_pdf( pdf_object, integrator_object).

Most of the functors provided in Hydra have an analytical integrator defined. To invoke it,
one should use the class template hydra::AnalyticalIntegral<Functor>, otherwise an
appropriated numerical integration algorithm needs be specified.

The snippet below shows how bind a Gaussian to its analytical integrator and build a pdf object:

It is also possible to represent models composed by the sum of two or more PDFs
using the class templates hydra::PDFSumExtendable<Pdf1, Pdf2,...> and
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hydra::PDFSumNonExtendabl<Pdf1, Pdf2,...> . Given N normalized pdfs 𝐹𝑖 ,
theses classes define objects representing the sum

𝐹𝑡 =
𝑁∑︁
𝑖

𝑐𝑖 × 𝐹𝑖

The coefficients 𝑐𝑖 can represent fractions or yields. If the number of coeffi-
cients is equal to the number of PDFs, the coefficients are interpreted as yields and
hydra::PDFSumExtendable<Pdf1, Pdf2,...> is used. If the number of coefficients is
(𝑁 − 1), the class template hydra::PDFSumNonExtendabl<Pdf1, Pdf2,...> is used and
the coefficients are interpreted as fractions defined in the interval [0,1]. The coefficient of the
last term is calculated as 𝑐𝑁 = 1−

∑︀(𝑁−1)
𝑖 𝑐𝑖 .

hydra::PDFSumExtendable<Pdf1, Pdf2,...> and hydra::PDFSumNonExtendabl<Pdf1,
Pdf2,...> objects can be conveniently created using the function template
hydra::add_pdfs(...).

The code snippet below shows how to implement a model with two components, a Gaussian and
a Argus distribution, to build a extended model, which can be used to predict the corresponding
yields:

The user can get a reference to one of the component PDFs using the method PDF(
hydra::placeholder ). This is useful, for example, to change the state of a component PDF
“in place”. Same operation can be performed for coeficients using the method Coefficient(
unsigned int ) :

#include<hydra/Placeholders.h>

using namespace hydra::placeholders;

...

//change the mean of the Gaussian to 2.0
model.PDF( _0 ).SetParameter(0, 2.0);

//set Gaussian coeficient to 1.5e4
model.Coefficient(0).SetValue(1.5e4);

The Hydra classes representing PDFs are not dumb arithmetic beasts. These classes are lazy
and implements a series of optimizations in order to forward to the thread collection only code
that need effectively be evaluated. In particular, functor normalization is cached in a such way
that only new parameters settings will trigger the recalculation of integrals.
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8.2 Defining FCNs and invoking the ROOT::Minuit2 in-
terfaces

In general, a FCN is defined binding a PDF to the data the PDF is supposed to describe. Hydra
implements classes and interfaces to allow the definition of FCNs suitable to perform maximum
likelihood fits on unbinned and binned datasets. The different use cases for Likelihood FCNs
are covered by the specialization of the class template hydra::LogLikelihoodFCN<PDF,
Iterator, Extensions...>.

Objects representing likelihood FCNs can be conveniently instantiated using the function tem-
plate hydra::make_likelihood_fcn(data_begin, data_end , PDF)

and hydra::make_likelihood_fcn(data_begin, data_end ,
weights_begin, PDF), where data_begin, data_end and weights_begin
are iterators pointing to the dataset and the weights.

#include <hydra/LogLikelihoodFCN.h>
//Minuit2
#include "Minuit2/FunctionMinimum.h"
#include "Minuit2/MnUserParameterState.h"
#include "Minuit2/MnPrint.h"
#include "Minuit2/MnMigrad.h"
#include "Minuit2/MnMinimize.h"

...

// get the fcn...
auto fcn = hydra::make_loglikehood_fcn(dataset.begin(), dataset.

→˓end(), model);
// and invoke Migrad minimizer from Minuit2
MnMigrad migrad(fcn, fcn.GetParameters().GetMnState(),␣

→˓MnStrategy(2));

8.3 sPlots

The sPlot technique is used to unfold the contributions of different sources to the data sample
in a given variable. The sPlot tool applies in the context of a Likelihood fit which needs to be
performed on the data sample to determine the yields corresponding to the various sources.

Hydra handles sPlots using the class template hydra::SPlot<Iterator, PDF1,
PDF2,PDFs...> where Iterator is an iterator point to data

PDF1, PDF2 and PDFs... are the probability density functions describing the populations
contributing to the dataset as modeled in a given

variable referred as discriminating variable.

The other variables of interest, present in the dataset are referred as control variables and
are
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statistically unfolded using the so called sweights. For each entry in the dataset,
hydra::SPlot<Iterator, PDF1, PDF2,PDFs...> calculates a set of weights, each one
corresponds to a data source described by the corresponding PDF. It is not necessary to al-
locate memory to store the sweights. It is calculated on the fly when the user iterates over
the hydra::Splot object. One can create the hydra::Splot object using the convenience
functions hydra::make_splot(PDF, data_range )``or ``hydra::make_splot(PDF,
data_begin, data_end ), where PDF is a PDFSumExtendable<PDF1, PDF2, PDFs...>
object. It is responsability of the user to make sure that the passed PDF object properly optimized
to describe the data.

#include <hydra/SPlot.h>

...

//splot
//create splot
auto sweigts = hydra::make_splot(fcn.GetPDF(), range );

auto covar_matrix = sweigts.GetCovMatrix();

std::cout << "Covariance matrix "
<< std::endl
<< covar_matrix
<< std::endl
<< std::endl;

std::cout << std::endl
<< "sWeights:"
<< std::endl;

for(size_t i = 0; i<10; i++)
std::cout << "[" << i << "] :"

<< sweigts[i]
<< std::endl
<< std::endl;
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