Hydra Documentation
Release 3.X.Y

Antonio Augusto Alves Junior

Oct 25, 2020






Introduction

1.1 Hydraframework . . . . .. ... ... .......
1.2 Designhighlights . . . . .. ... ..........
1.3 Basicfeatures. . . .. ... ... ..........
1.4 How does this manual is organized? . . . . . . . ..

Functors and C++11 lambdas.

2.1 Functors . ... ... .. .. .. ... 0.,
22 C+4++l1lLambdas . ... ... ............
Containers
3.1  One-dimensional containers . . . .. ... .. ...
3.2 Multi-dimensional containers . . . . ... .. ...
32.1 hydra::multivector ... ......
Histograms
4.1 Binningconvention. . . . ... ... ........
4.2 Global and dimensional binning . . . . . . ... ..
43 Dense histograms . . . . . ... ... ...
4.4  Sparse histograms . . . . ... ...

Random number generation and PDF sampling

5.1  Sampling basic distributions . . . . . .. ... ...

5.2 Multidimensional PDF sampling . . . . . ... ...

Phase-space Monte Carlo

6.1 Decaysanddecaychains . . .. ... ........

6.2  Phase-space Monte Carlo generator. . . . . . . . ..
6.2.1  Generating one-level decays . .. ... ..
6.2.2  Generating sequential decays . . . . . . ..

6.3 Otherfeatures . .. ... .. .. ... .......

Numerical integration

7.1  Gauss-Kronrod quadrature . . . . .. ... .....
7.2 Self-Adaptive Gauss-Kronrod quadrature . . . . . .
7.3  Genz-Malik multidimensional quadrature . . . . . .
74 PlaimnMonteCarlo . ... ..............

CONTENTS:

11

.............. 11
.............. 12
.............. 12

17

.............. 17
.............. 17
.............. 18
.............. 18

21

.............. 21
.............. 22

25

.............. 25
.............. 25
.............. 26
.............. 27
.............. 28




7.5  Self-adaptive importance sampling (Vegas) . . . . . . .. ... .. ... ...
7.6  Implementing analytical integration

8 Parameter estimation
8.1 DefiningPDFs . . . ... ... . .. .. e

8.2  Defining FCNs and invoking the ROOT : : Minuit?2 interfaces . .. ... ..
83 sPlots . . . . ..

9 References
10 Indices and tables

Bibliography

45

47

49




CHAPTER
ONE

INTRODUCTION

1.1 Hydra framework

Despite the ongoing efforts of modernization, a large fraction of the software used in HEP
remain based on legacy. It mostly consists of libraries assembling single threaded, Fortran and
C++03 mono-platform routines [3]. Concomitantly, HEP experiments keep collecting samples
with unprecedented large statistics and data analyses become increasingly complex. Are not
rare the situations where computers spend days performing calculations to reach a result, which
very often needs re-tune.

On the other hand, computer processors will not increase clock frequency any more in order to
reach higher performance. Indeed, the current road-map to improve overall performance is to
deploy different levels of concurrency, which for example has been leading to the proliferation
of multi-thread friendly and multi-platform environments among HPC data-centers. Unfortu-
nately, HEP software is not completely prepared yet to fully exploit concurrency and to deploy
more opportunistic computing strategies.

The Hydra framework proposes a computing model to approach these issues. The Hydra pro-
vides collection of parallelized high-level algorithms, addressing some of of typical computing
bottlenecks commonly found in HEP, and a set of optimized containers and types, through a
modern and functional interface, allowing to enhance HEP software productivity and perfor-
mance and at same time keeping the portability between NVidia GPUs, multi-core CPUs and
other devices compatible with CUDA [4], TBB [5] and OpenMP [6] computing models.

1.2 Design highlights

Hydra is basically a header-only C++11 template framework organized using a variety of static
polymorphism idioms and patterns. This ensure the predictability of the stack at compile time,
which is critical for stability and performance when running on GPUs and minimizes the over-
head introduced by the user interface when engaging the actual calculations. Furthermore,
the implementation of static polymorphism via extensive usage of templates allows to expose
the maximum amount of code to the compiler, in the context in which the code will be used,
contributing to activate many compile time optimizations that could not be accessible other-
wise. Hydra’s interface and implementation details extensively deploys patterns and idioms
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that enforce thread-safeness and efficient in memory access and management. The following
list summarizes some of the main design choices adopted in Hydra:

* Hydra provides a set of optimized STL-like containers that can store multidimensional
datasets using [7] layout.

» Data handled using iterators and all classes manages resources using RAII idiom.
* The framework is type and thread-safe.

* There is no limitation on the maximum number of dimensions that containers and algo-
rithms can handle.

The types of devices which Hydra can be deployed are classified by back-end type,
according with the device compatibility with certain computing models.  Currently,
Hydra supports four back-ends, which are CPP [8], OpenMP [6], CUDA [4] and
TBB [5]. Code can be dispatched and executed in all supported back-ends concur-
rently and asynchronously in the same program, using the suitable policies represented
by the symbols hydra::omp::sys , hydra::cuda::sys, hydra::tbb::sys,
hydra::cpp::sys, hydra::host::sys and hydra: :device: :sys. Where ap-
plicable, these policies define the memory space where resources should be allocated to run
algorithms and store data.

For mono-backend applications, source files written using Hydra and standard C++ compile for
GPU and CPU just exchanging the extension from .cu to .cpp and one or two compiler flags.
So, basically, there is no need to refractory code to deploy different back-ends.

1.3 Basic features

Currently, Hydra provides collection of parallelized high-level algorithms, addressing some
computing-intensive tasks commonly found in data analyses in HEP. The available high-level
algorithms are listed below,

* Interface to Minuit2 minimization package [1], allowing to accelerate maximum likeli-
hood fits over multidimensional large data-sets.

* Parallel implementation of the SPlot technique, a very popular procedure for statistical
unfolding of data distributions [2] .

» Phase-space Monte Carlo generation, integration and modeling.
* Multidimensional p.d.f. sampling.
* Parallel function evaluation on multidimensional data-sets.

* Five fully parallelized numerical integration algorithms: Genz-Malik [9][10], self-
adaptive and static Gauss-Kronrod quadratures, plain, self-adaptive importance sampling
and phase-space Monte Carlo integration.

2 Chapter 1. Introduction
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1.4 How does this manual is organized?

By the time it was written, this manual covers the usage of most of the Hydra features. This
manual was written to be read sequentially. The sections are organized by subject and are sorted
to make available the functionality described in a given section usable in the next parts.

1.4. How does this manual is organized?



Hydra Documentation, Release 3.X.Y

4 Chapter 1. Introduction



CHAPTER
TWO

FUNCTORS AND C++11 LAMBDAS.

The user’s code is passed to Hydra’s algorithms through functors and C++11 lambda functions.
Hydra adds type information and functionality to functors and lambdas using CRTP idiom.
Functors and lambdas are entities not attached to a specific back-end. The signatures conven-
tions adopted for functors and lambdas as well as the added functionality will be discussed in
the following lines.

2.1 Functors

In C++, a functor, sometimes also referred as a function object, is any class or structure
that overloads the function call operator 0perator () (Args ...x). In Hydra, all func-
tors derives from the class template hydra: :BaseFunctor<Functor, ReturnType,
NParameters>. The template parameters are described below:

* Functor : the type of the functor.
* ReturnType: the type returned by the functor.
* NParameters: the number of parameters the functor has.

The user needs only to implement the method Evaluate (...) and Hydra will take care of
implementing the function call operator. The signature of Evaluate (...) depends on the
type of data that will be passed. There are two possibilities:

1. The functor is supposed to take as arguments (one-)multidimensional data
with the same type. In this case the signature of the Evaluate (...)
method will be

template<typename T>
_ _host_ _ device_
ReturnType Evaluate (unsigned int n , Tx x);

where T is the data type, n the number of arguments and x a pointer to an array
of arguments. The symbols __host__ _ device__ are the necessary to make
the functor callable on host and device memory spaces.

2. The functor is supposed to take as arguments multidimensional data with dif-
ferent types, so data will be compacted in a hydra: : tuple object. In this
case the signature of the function call operator will be
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template<typename T>
_ _host_ _ device_
ReturnType Evaluate (T& x);

where T is the dataset entry type, in this case a hydra: : tuple of arguments.

The parameters are represented by the hydra::Parameter. The parameters can
be named, store maximum and minimum values and error. The objects of the class
hydra: :Parameter can be instantiated using named field idiom or field list idiom, like
this

#include <Parameter.h>
#include <string>

auto pl = hydra::Parameter::Create () .Name ("pl") .Value(0.0) .Limits (-
—~1.0, 1.0).Error(0.01);

auto p2 = hydra::Parameter("pl",0.0,0.001,-1.0, 1.0);

Hydra does not check uniqueness of the name of the parameters at creation time in any way.
It is up to the user to care about the contexts where parameters can have or not the same
name. The parameters of a functor are accessible via the _par [] subscript operator or in-
voking the GetParameter (unsigned int i) and GetParameter (const charx
name) functor member function.

As an example, let’s consider the Gaussian function with mean p and sigma o

e_%(ﬂﬁ;u)2

fla) = —

_0 2

and suppose the corresponding functor will take as arguments data with same type and evaluate
the Gaussian on argument set by the template parameter ArgIndex.

The corresponding code in Hydra would look like this

#include <hydra/Parameters.h>
#include <hydra/Function.h>

template<unsigned int ArgIndex=0>
class Gaussian: public BaseFunctor<Gaussian<ArglIndex>, double, 2> {

using BaseFunctor<Gaussian<ArgIndex>, double, 2>::_par;
public:
Gaussian () =delete;

Gaussian (Parameter const& mean, Parameter const&é sigma ) :
BaseFunctor<Gaussian<ArgIndex>, double, 2> ({mean, sigma})

{1

(continues on next page)

6 Chapter 2. Functors and C++11 lambdas.
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(continued from previous page)

_ _host__ device_
Gaussian (Gaussian<ArgIndex> consté& other ) :
BaseFunctor<Gaussian<ArgIndex>, double, 2> (other)

{}

__host__ device_
Gaussian<ArgIndex>é&
operator= (Gaussian<ArgIndex> consté& other ) {

if (this==&other) return +this;

BaseFunctor<Gaussian<ArgIndex>,double, 2>::operator=(other);
return +this;

template<typename T>

__host__ device__ inline

double Evaluate (unsigned int, Tx*x) const {

double m2 = (x[ArgIndex] - _par[0])*(x[ArgIndex] - _par[0] );
double s2 = _par[l]x*_par[l];

return exp(-m2/ (2.0 x s2 ));

template<typename T>
__host._ device__ inline
double Evaluate (T x) const {

double m2 = ( get<ArgIndex>(x) - _par[0])* (get<ArgIndex>(x) — _
—par[0] );

double s2 = _par[l]*_par[1l];

return exp(-m2/ (2.0 x s2 ));

}

}i

auto m = hydra::Parameter::Create () .Name ("mean") .Value(0.0) .Limits (-

—~1.0, 1.0).Error(0.01);

auto s hydra: :Parameter::Create () .Name ("sigma") .Value (1.0) .
—Limits (0.01, 5.0) .Error(0.01);

Gaussian gauss(m, s);

(continues on next page)

2.1. Functors 7
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(continued from previous page)

double args_single(1.0);
hydra: :tuple<int, double> args_tuple{0, 1.0};
double args_array[2]{0.0, 1.0};

// the following calls produces the same results
std: :cout << gauss (args_single) << "
<< gaussl (args_tuple) << "o

<< gaussl (2, args_array) << std::endl;

"

Actually, Hydra users will rarely call functors directly. Functors are used to encapsulate user’s
code that will be called in parallelized calculations by the Hydra algorithms in multi-threaded
CPU and GPU environments. It is user’s responsibility care about race conditions and other
problems bad coded functors can cause. It is strongly advised to avoid dynamic memory
allocation inside functors.

2.2 C++11 Lambdas

Hydra fully supports C++11 lambdas. Before to pass C++11 lambdas to Hydra’s algorithms,
users need to wrap it into a suitable Hydra object. This is done invoking the function template
hydra: :wrap_lambda ().

As well as for functors, the signature of the lambda function depends on the type of data that
will be passed. There are two possibilities:

1. The functor is supposed to take as arguments data with the same type. In this
case the signature of the function call operator will be

[=]__host___ __device__ (unsigned n, Tx x){
//implementation goes here

}i

where T is the data type, n the number of arguments and x a pointer to an array
of arguments. The symbols __host___ ___device___ are the necessary to make
the lambda callable on host and device memory spaces.

2. The functor is supposed to take as arguments data with different types. In this
case the signature of the function call operator will be

[=]_host_ _ device_ (T x){
//implementation goes here

}i

where T is the data type, in this case a hydra: : tuple of arguments.

Hydra can also handle “parametric lambdas”. Parametric lambdas are wrapped C++11 lamb-
das that can hold named parameters (hydra: :Parameters objecs). The signatures for
parametric lambdas are:

8 Chapter 2. Functors and C++11 lambdas.
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1. The functor is supposed to take as arguments data with the same type. In this
case the signature of the function call operator will be

[=]__host___ _ _device__ (unsigned int np, hydra::Parametersx
—p, unsigned na, Tx args)

{

//implementation goes here
}i

where nparams is the number of parameters, params is a pointer to the array
of parameters, T is the data type, nargs the number of arguments and args a
pointer to the array of arguments. The symbols __host__ _ device__ are
the necessary to make the lambda callable on host and device memory spaces.

2. The functor is supposed to take as arguments data with different types. In this
case the signature of the function call operator will be

[=]_host___ _ device__ (unsigned int nparams,
—hydra: :Parameters params, T args)

{

//implementation goes here

}i

where nparams is the number of parameters, params is a pointer to the array of
parameters and T is the data type, in this case, a hydra: : tuple of arguments.

The following example shows how to wrap a lambda to calculate a Gaussian function capturing
the mean and sigma from the lambda’s enclosing scope:

#include <hydra/FunctorWrapper.h>

double mean = 0.0;
double sigma = 1.0;
auto raw_gaussian = [=] __host__ _ device__ (unsigned int nargs,
—~doublex args) {
double m2 = (x[0] — mean )*(x[0] — mean );
double s2 = sigmax*sigma;

return exp(-m2/ (2.0 = s2 ))/( sqrt(2.0%xs2xPI));

}i

auto wrapped_gaussian = hydra::wrap_lambda (raw_gaussian);

In the previous example the mean and the sigma of the Gaussian can not be changed once the
lambda is instantiated. The user can overcome this limitation instantiating a parametric lambda:

2.2. C++11 Lambdas
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#include <hydra/FunctorWrapper.h>
#include <hydra/Parameter.h>

auto raw_gaussian = [=] __host__ _ device__ (unsigned int nparams,
—hydra: :Parameters+ params,
unsigned int nargs, doublex args) {

double m2 = (x[0] - params[0] )*(x[0] - params[0] );
double s2 = params[l]*params[1l];

return exp(-m2/ (2.0 = s2 ))/( sqrt(2.0%xs2xPI));
}i

auto mean = hydra::Parameter::Create () .Name ("mean") .Value (0.0) .
—Limits(-1.0, 1.0).Error(0.01);

auto sigma = hydra::Parameter::Create () .Name ("sigma") .Value (1.0).
—~Limits(0.01, 5.0) .Error(0.01);

auto wrapped_gaussian = hydra::wrap_lambda (raw_gaussian, mean,
—sigma) ;

//set the parameters to different values
wrapped_gaussian.SetParameter (0, 1.0);
wrapped_gaussian.SetParameter (1, 2.0);

The wrapped_gaussian of the previous example has the same functionality of the functor
coded in the example.

Wrapped lambdas, parametric or not, also derives from hydra: : BaseFunctor and provide
the same functionality of the Hydra functors.

10 Chapter 2. Functors and C++11 lambdas.




CHAPTER
THREE

CONTAINERS

Hydra framework provides an one-dimensional STL-like vector container for each supported
back-end, aliasing the underlying Thrust types. The framework also implements two native
multidimensional containers called hydra::multivector ™ and hydra: :multiarray.

In these containers, the data corresponding to each dimension is stored in contigu-
ous memory addresses that can be traversed in a CPU/GPU cache friendly way,
independently of the other dimensions. In the case of multidimensional containers,
when the data is traversed each entry is accessed as

ahydra: :tuple object, where each field holds a value corresponding to a dimension.

3.1 One-dimensional containers

Hydra’s one-dimensional containers are aliases to the corresponding [Thrust] vectors and are
defined for each supported back-end. They are:

1.

hydra: :device: :vector : storage allocated in the device back-end defined at
compile time using the macro HYDRA_DEVICE_SYSTEM

hydra: :host::vector : storage allocated in the device back-end defined at com-
pile time using the macro HYDRA_HOST_SYSTEM

hydra: :omp: :vector : storage allocated in the [OpenMP] back-end. Usually the
CPU memory space.

hydra: :tbb: :vector : storage allocated in the [TBB] back-end. Usually the CPU
memory space.

. hydra::cuda::vector : storage allocated in the [CUDA] back-end. The GPU

memory space.

hydra: :cpp: :vector : storage allocated in the [CPP] back-end. Usually the CPU
memory

The usage of these containers is extensively documented in STL and [Thrust] library. Hydra
also implements range-semantics for many of these containers.

11
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3.2 Multi-dimensional containers

Hydra implements two multidimensional containers:hydra: :multivector and
hydra::multiarray. These containers store data using [SoA] layout and provides
a STL-vector compliant interface.

Both classes provides constant and non-constant accessors for the single dimensional data.
The container hydra: :multivector is suitable to store data-sets where the dimensions
are represented by entries with different POD types. hydra: :multiarray is designed to
store data-sets where all dimensions are represented by fields of the same type. Data is always
copyable across different back-ends and movable between containers on the same back-end.

The best way to understand how these containers operate is to visualize them as a table,
there each row corresponds to a entry and each column to a dimension. The design of
hydra::multivector and hydra::multiarray makes possible to iterate over the
container to access a complete row or to iterate over one or more columns to access only the
data of interest in a given entry, without loading the entire row.

When the user iterates over the whole container, each entry (row) is returned as a
hydra::tuple. If the user iterates over one single column, the entries have the type
of the column. If two or more columns are accessed, entry’s data is returned as again as
hydra: :tuple containing only the elements of interest. Hydra’s multi-dimensional con-
tainers can hold any type of data per dimension, but there is not real gain using these containers
for describing dimensions with non-POD or non alignable data.

These containers can store the state of arbitrary objects and perform type conversions on-the-
fly, using suitable overloaded iterators and push_back () methods.

3.2.1 hydra: :multivector

hydra::multivector templates are instantiated passing the type list corresponding to
each dimension viaa hydra: : tuple and the back-end where memory will be allocated. The
snippet below show how to instantiate a hydra: :multivector to store four-dimensional
data, two columns for integers and two columns for doubles:

#include <hydra/device/System.h>
#include<hydra/multivector.h>

hydra::multivector<hydra::tuple<int, int, double, double>,
—hydra::device::sys_t> mvector;

for (int i=0; 1i<10;1i++) {
mvector.push_back (hydra: :make_tuple( i, 2*i, 1, 2%i));

for (auto x:mvector) std::cout << x << std::endl;

this will print in stdout something like it :

12 Chapter 3. Containers
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(6, 0, 0.0, 0.0)
(1, 2, 1.0, 2.0)
(2, 4, 2.0, 4.0)

(9, 18, 9.0, 18.0)

To access the columns the user needs hydra: :placeholders: _0,_1,_2,...,_99;

#include <hydra/device/System.h>
#include<hydra/multivector.h>
#include<hydra/Placeholders.h>

using namespace hydra::placeholders;

hydra::multivector<hydra::tuple<int, int, double, double>,
—hydra::device::sys_t> mvector;

for (int i=0; 1i<10;1i++) {

mvector.push_back (hydra: :make_tuple( i, 2*i, 1, 2%i));

for (auto x = mvector.begin(_1, 3);
X !'= mvector.end(_1, _3); ++x )

std::cout << *x << std::endl;

now in stdout the user will get:

(0, 0.0)
(2, 2.0)
(4, 4.0)

(18, 18.0)

Now suppose that one want to interpret the data stored in mvector as a pair
of complex numbers, represented by the types hydra::complex<int> and
hydra: :complex<double>. It is not necessary to access each field stored in each
entry to perform a conversion invoking the corresponding constructors. The next example
shows how this can be accomplished in a more elegant way using a lambda function:

#include <hydra/device/System.h>
#include<hydra/multivector.h>
#include<hydra/Complex.h>

hydra::multivector<hydra::tuple<int, int, double, double>,
—hydra: :device: :sys_t> mvector;

(continues on next page)

3.2. Multi-dimensional containers 13
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(continued from previous page)

for(int 1i=0; 1i<10;i++) {
mvector.push_back (hydra: :make_tuple( i, 2xi, 1, 2%i));

auto caster = [] __host__ device__ ( hydra::tuple<int, int,
—~double, double>& entry )
{

hydra: :complex<int> cint (hydra::get<0>(entry), hydra::get<l>
— (entry));

hydra: :complex<double> cdouble (hydra::get<2> (entry), hydra::get
—<2>(entry));

return hydra::make_pair( cint, cdouble );
}i

for (auto x = mvector.begin(caster); x != mvector.end(caster);
s X++ )

std::cout << *x << std::endl;

stdout will look like:

Same effect can be
hydra: :multiarray

hydra: :multiarray templates are instantiated passing the type and the number of dimen-
sions via and the back-end where memory will be allocated. The snippet below show how to
instantiate a hydra: :multiarray to store four-dimensional data, two columns for integers
and two columns for doubles:

#include <hydra/device/System.h>
#include<hydra/multiarray.h>

hydra::multiarray<4, double, hydra::device::sys_t> marray;

for (int i=0; i<10;i++) {
marray.push_back (hydra: :make_tuple( i, 2+1i, 4%i, 8xi));

for (auto x:marray) std::cout << x << std::endl;

14 Chapter 3. Containers
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this will print in stdout something like it :

(0.0, 0.0, 0.0, 0.0)
(1.0, 2.0, 4.0, 8.0)
(2.0, 4.0, 8.0, 16.0)

(9.0, 18.0, 36.0, 72.0)

To access the columns the user can deploy hydra: :placeholders: _0,_1, _2... oruse
unsigned it indexes.

#include <hydra/device/System.h>
#include<hydra/multiarray.h>
#include<hydra/Placeholders.h>

using namespace hydra::placeholders;

hydra::multiarray<4, double, hydra::device::sys_t> marray;

for(int 1=0; 1<10;1i++) {
marray.push_back (hydra: :make_tuple( i, 2x1i, i, 2x1i));

for (auto x = marray.begin(_1, _3);
X != marray.end(_1, _3); xt+ )
std::cout << xx << std::endl;

now in stdout the user will get:

(18.0, 72.0)

Now suppose that one want to interpret the data stored in mvector as a pair
of complex numbers, represented by the types hydra::complex<double> and
hydra: :complex<double>. It is not necessary to access each field stored in each en-
try to perform a conversion invoking the corresponding constructors. The next example shows
how this can be accomplished in a more elegant way using a lambda function:

#include <hydra/device/System.h>
#include<hydra/multiarray.h>
#include<hydra/Complex.h>

hydra::multiarray<4, double, hydra::device::sys_t> marray;

(continues on next page)

3.2. Multi-dimensional containers 15
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(continued from previous page)

for(int 1i=0; 1i<10;i++) {
marray.push_back (hydra: :make_tuple( i, 2%1i, i, 2x1i));

auto caster = [] __host_ device__ (hydra::tuple<double, double,
— double, double>& entry ) {

hydra: :complex<double> cl (hydra::get<0>(entry), hydra::get<l>
— (entry));

hydra: :complex<double> c2 (hydra::get<2>(entry), hydra::get<2>
— (entry));

return hydra::make_pair( cl, c2);
}i
for (auto x = marray.begin(caster); x != marray.end(caster); x++_
)
std::cout << x*x << std::endl;
stdout will look like:

16 Chapter 3. Containers




CHAPTER
FOUR

HISTOGRAMS

Hydra implements two classes dedicated to calculate multidimensional histograms in parallel.
One class for dense histograms and other for sparse histograms. These classes provide only
the basic functionality to calculate the histogram using one of the supported parallel back-ends.
Once calculated, the histogram contents can be exported to external libraries, like ROOT, for
drawing etc.

The histograms classes does not process event-by-event. They takes iterators pointing to con-
tainers storing the data and process it at once. This approach is orders of magnitude more
efficient than iterate over the container and histogram in entry-by-entry basis.

4.1 Binning convention

In Hydra, a histogram with N bins is stored in a array with length N+2. In range contents are
indexed starting from O to N-1. Underflow contents are stored in bin N and overflow contents
are stored in bin N+1.

4.2 Global and dimensional binning

The histogram contents is organized in a linear array of length N+2, where N is total number
of bins, obtained multiplying the number of bins configured in for each dimension. The con-
version between global bin number and dimensional bin numbers is performed by the methods
GetBin(...) and GetIndexes (.. .), implemented in both classes. The internal index-
ing convention used in Hydra in general does not match the one used in other libraries and
interfaces. Users are advised to always export the histogram contents using the bin numbers
per bin.

17
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4.3 Dense histograms

Dense histograms store all bins, including ones with zero content. In Hydra, they are repre-
sented by the class hydra: :DenseHistogram<Type, NDimensions, Backend>,
where NDimensions is the number of dimensions, Type is the type of the histogram’s val-
ues and Backend is memory space where the histogram is allocated.

The code snippet below shows how to instantiate and fill a dense histogram in Hydra:

#include <hydra/device/System.h>
#include <hydra/multiarray.h>
#include <hydra/DenseHistogram.h>
#include <array>

hydra::multiarray<4, double, hydra::device::sys_t> mvector;
// fill mvector with the data of interest...

//histogram ranges
std: :array<double, 4>max{ 1.0, 2.0, 3.0, 4.0};
std: :array<double, 4>min{-1.0, -2.0, -3.0, —-4.0};

//bins per dimension
std: :array<size_t, 3> nbins{10, 20, 30, 40};

//create histogram
hydra: :DenseHistogram<3, double> Histogram(nbins, min, max);

Histogram.Fill ( mvector.begin (), mvector.end());

//getting bin content [0, 2, 3, 1]
Histogram.GetBinContent ({0, 2, 3, 11});

4.4 Sparse histograms

Sparse histograms store only bins with non-zero content. In Hydra, they are represented
by the class hydra: : SparseHistogram<Type, NDimensions, Backend>, where
NDimensions is the number of dimensions, Type is the type of the histogram’s values and
Backend is memory space where the histogram is allocated.

#include <hydra/device/System.h>
#include <hydra/multiarray.h>
#include <hydra/SparseHistogram.h>

(continues on next page)

18 Chapter 4. Histograms




Hydra Documentation, Release 3.X.Y

(continued from previous page)

#include <array>

hydra::multiarray<4, double, hydra::device::sys_t> mvector;

// fill mvector with the data of interest...

//histogram ranges
std: :array<double, 4>max{ 1.0, 2.0, 3.0, 4.0};
std: :array<double, 4>min{-1.0, -2.0, -3.0, —-4.0};

//bins per dimension
std::array<size_t, 3> nbins{10, 20, 30, 40};

//create histogram
hydra: :SparseHistogram<3, double> Histogram(nbins, min,

Histogram.Fill ( mvector.begin(), mvector.end());

//getting bin content [0, 2, 3, 1]
Histogram.GetBinContent ({0, 2, 3, 1});

max) ;

4.4. Sparse histograms
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CHAPTER
FIVE

RANDOM NUMBER GENERATION AND PDF SAMPLING

The generation of random numbers and sampling of multidimensional PDFs is supported in
Hydra through the class hydra: :Random<typename Engine>, where Engine is the
random number generator engine. The only argument of the hydra: : Random constructor is
the seed of random number generator. There are four random number engines available

1. hydra: :minstd_rand0O: implements a version of the Minimal Standard random
number generation algorithm.

2. hydra: :minstd_rand: implements a version of the Minimal Standard random num-
ber generation algorithm.

3. hydra::ranlux24: RANLUX level-3 random number generation algorithm.
4. hydra::ranlux48: RANLUX level-4 random number generation algorithm.

5. hydra: :taus88: L’Ecuyer’s 1996 three-component Tausworthe random number gen-
erator.

The default random number generation engine is hydra: :minstd_rand0, which produces
pseudo-random numbers with quality appropriated for most applications. This class provides
methods that take iterators pointing to containers that will be filled with random numbers dis-
tributed according the requested distributions. If an explicit back-end policy is passed, the
generation is parallelized in the corresponding back-end, otherwise the class will process the
random number generation in the back-end the containers is allocated.

5.1 Sampling basic distributions

hydra: : Random defines four methods to generate predefined one-dimensional. These meth-
ods are summarized below, where begin and end are iterators pointing to the range that will
filled with random numbers. The other parameters represent the standard definitions:

1. hydra: :Random: :Gauss ( mean, sigma, begin, end) for Gaussian dis-
tribution.

2. hydra::Random: :Exp (tau, begin, end) for exponential distribution.

3. hydra::Random: :Uniform (min, max, begin, end) for an uniform distri-
bution.
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4. hydra: :Random: :BreitWigner (mean, width, begin, end) for non-
relativistic Breit-Wigner distribution.

The example below show how to use these methods

#include <hydra/device/System.h>
#include <hydra/Random.h>

hydra: :Random<> Generator (4598635);
hydra: :device: :vector<double> data(leb6);

//uniform distribution in the interval [-5,5]
Generator.Uniform(-5.0, 5.0, data.begin(), data.end());

//Gaussian distribion with mean=0 and sigma =1
Generator.Gauss (0.0, 1.0, data.begin(), data.end());

//exponential distribion with tau=1l
Generator.Exp (1.0, data.begin(), data.end());

//Breit-Wigner with mean 2.0 width 0.2
Generator.BreitWigner (2.0, 0.2, data_d.begin(), data_d.end());

5.2 Multidimensional PDF sampling

The class hydra: :Random also supports the sampling of multidimensional probability
density functions (PDF) through the method hydra: : Random: : Sample (begin, end,
min, max, functor),whereminandmax are static arraysor std: :array objects rep-
resenting the limits of the multidimensional region. functor is a Hydra functor representing
the PDF.

The PDF's are sampled using a parallel version of the accept-reject method. The
hdra::Random: :Sample returns a hydra::GenericRange object point-
ing to a range filled with the sampled numbers. The PDF sampling

is processed filling the container with random numbers and reordering it to reproduce the shape
of the PDF, no memory reallocation is performed during this process. The range returned by
the method points to a sub-set of the original container, the size of this range depends on the
efficiency of the accept-reject for the given PDF.

The code below shows how to sample a three-dimensional PDF

#include <hydra/device/System.h>
#include <hydra/Random.h>
#include <hydra/Lambda.h>

(continues on next page)
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double mean =
double sigma

= o

. N

o O
~

auto gaussian = hydra::wrap_lambda (
[=] __host__ _ device__ (unsigned int n,doublex x ) {

double g = 1.0;

for(size_t i=0; 1i<3; 1i++){
double m2 = (x[1] - mean )*(x[1] - mean );
double s2 = sigmaxsigma;
g *= exp(m2/(2.0 = s2 ))/( sgrt (2.
—~0%xs2+PI1));

return g;

)

std: :array<double, 3> max{ 6.0, 6.0, 6.0};
std: :array<double, 3> min{-6.0, -6.0, -6.0};

hydra::multiarray<3, double, hydra::device::sys_t> data;
auto range = Generator.Sample (data.begin(), data.end(), min, max,
—gaussian) ;

5.2. Multidimensional PDF sampling 23
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CHAPTER
SIX

PHASE-SPACE MONTE CARLO

Phase-Space Monte Carlo simulates the kinematics of a particle with a given four-momentum
decaying to a n-particle final state, without intermediate resonances. Samples of phase-space
Monte Carlo events are widely used in HEP studies where the calculation of phase-space vol-
ume is required as well as a starting point to implement and describe the properties of models
with one or more resonances or even to simulate the response of the detector to decay’s products
[James].

Hydra provides an implementation of the Raubold-Lynch method [James] and can generate
the full kinematics of decays with any number of particles in the final state. Sequential decays,
evaluation of models, production of weighted and unweighted samples and many other features
are also supported.

6.1 Decays and decay chains

The four-vector of the generated final-state particles are stored in the dedicated vector-like
container hydra: :Decays<N, BACKEND> where N is the number of particles in the final
state and BACKEND ™ " is the memory space where allocate the storage.
" “hydra: :Decays<N, BACKEND> can be aggregated to describe sequential decays using
hydra::Chains<Decays. . .> objects.

Both classes are iterable, but the hydra: : Chains<Decays. . .> container does not imple-
ment a full vector-like interface. Pre-allocated hydra: :Decays<N, BACKEND> can not be
added to a hydra: :Chains<Decays...>.

6.2 Phase-space Monte Carlo generator.

The phase-space  Monte Carlo generator is represented by the class
hydra: :PhaseSpace<N, RNG>, where is the number of particles and RGN is under-
lying random number generator to be used. The constructor of the hydra: :PhaseSpace
takes as parameter an array with the masses of the final state particles. The decays are
generated invoking the overloaded hydra: :PhaseSpace: :Generate (...) method.
This method can take a hydra: : Vect or4R, describing momentum of a only mother particle
or iterators pointing for a container storing a list of mother particles and the iterators pointing
to the hydra: :Decays<N, BACKEND> container that will hold the generated final states. If

25



Hydra Documentation, Release 3.X.Y

an explicit policy policy is passed, the generation is parallelized in the corresponding back-end,
otherwise the class will process the random number generation in the back-end where the
containers are allocated.

6.2.1 Generating one-level decays

The code below shows how to generate a sample of 20 million B — J/¢ K Tn~ decays and
fill a Dalitz’s plot, i.e. a histogram M?(J/¢r " )osM?*(KTn™):

#include <hydra/Types.h>
#include <hydra/Vector4R.h>
#include <hydra/PhaseSpace.h>
#include <hydra/device/System.h>
#include <hydra/Decays.h>

size t nentries = 20e6; // number of events to generate
double B0 _mass = 5.27955; // BO mass

double Jpsi_mass 3.0969; // J/psi mass

double K_mass 0.493677; // K+ mass

double pi_mass 0.13957061; // pi mass

// mother particle
hydra::Vector4R BO (BO_mass, 0.0, 0.0, 0.0);

// decays container
hydra: :Decays<3, hydra::device::sys_t > Events(nentries);

hydra: :PhaseSpace<3> phsp{Jpsi_mass, K_mass, pi_mass};

// generate the final state particles
phsp.Generate (BO, Events.begin(), Events.end());

// functor to calculate Dalitz variables
auto dalitz_calculator = hydra::wrap_lambda (

[=] __host___ _ device__ (unsigned int np, hydra::Vectorx
—particles) {

hydra: :Vector4R Jpsi = event[0];
hydra::Vector4R K event[1];
hydra: :Vector4R pi event [2];

double M2_Jpsi_pi (Jpsi + pi).mass2();
double M2_Kpi = (K + pi).mass2();

return hydra::make_tuple( M2_Jpsi_pi, M2_Kpi);

(continues on next page)
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/7

auto particles = Events.GetUnweightedDecays () ;

// use an smart-range to calculate the Dalitz variables

// without have to store 1it. ;)

auto dalitz_variables = hydra::make_range( particles.begin(),
—particles.end(), dalitz_calculator);

—

// get the event's weights
auto dalitz_weights = Events.GetWeights () ;

// 1instantiate 2D histogram
hydra: :DenseHistogram<2, double> Hist_Dalitz ({100,100}, {pow(Jpsi_
—mass + pi_mass,2), pow(K_mass + pi_mass,2)},

{pow (BO_mass — K_mass,2) , pow(BO_mass - Jpsi_mass,2)} );

//fill the histogram
Hist_Dalitz.Fill(dalitz_variables.begin(), dalitz_variables.end(),
—~dalitz_weights.begin());

—

In the previous example, the user can foward the Hydra: : DenseHistogram to ROOT and
draw it.

6.2.2 Generating sequential decays

The code below shows how to generate a sample of 20 million decay chains B® — J/o KT~
with J/v — ptpu~.

The first step to process the decay chain is to the generate the decays B® — J/¢ K+, then
the list of J/1) candidates is passed to the instance of hydra: : PhaseSpace to generate the
J/v — ptp~ corresponding to each .J/i) mother. Notice that the decay events stored in a
given chain are accessed using a hydra: :placeholder.

#include <hydra/Types.h>
#include <hydra/Vector4R.h>
#include <hydra/PhaseSpace.h>
#include <hydra/device/System.h>
#include <hydra/Chains.h>
#include <hydra/Placeholders.h>

using namespace hydra::placeholders;

(continues on next page)
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size t nentries = 20e6; // number of events to generate
double B0 _mass = 5.27955; // BO mass

double Jpsi_mass = 3.0969; // J/psi mass

double K _mass = 0.493677; // K+ mass

.13957061; // pi mass
.1056583745 ; // mu mass

double pi_mass =
double mu_mass =

O O O W

// mother particle
hydra::Vector4R BO (BO_mass, 0.0, 0.0, 0.0);

// create PhaseSpace object for BO -> K pi J/psi
hydra: :PhaseSpace<3> phsp_B2JpsiKpi{Jpsi_mass, K_mass, pi_mass };

// create PhaseSpace object for J/psi —> mu+ mu-
hydra: :PhaseSpace<2> phsp_JpsiZ2mumu{mu_mass , mu_mass};

// allocate memory to hold the final states particles
auto Events = hydra::make_chain<3,2> (hydra::device::sys, nentries);

//generate the final state particles for BO -> K pi J/psi
phsp_B2JdpsiKpi.Generate (BO, Events.GetDecay (_0) .begin(),
Events.GetDecay (_0) .end());

//pass the 1list of J/psi to generate the final
//state particles for J/psi —> mu+ mu-
phsp_Jpsi2mumu.Generate (Events.GetDecay (_0) .GetDaughters (0) .begin(),
Events.GetDecay (_0) .GetDaughters (0) .end (),
Events.GetDecay (_1) .begin());

6.3 Other features

The classes of the phase-space module provides many other functionality. The list below sum-
marizes some of them:

* Calculate the mean and the variance of a functor over a phase-space without the need to
generate and store events.

* Evaluate functors and stored the result without the need to generate and store events.
* Unweight and re-weight events stored in hydra: : decay objects to match .

* Access single particle’s Vector4R or its components of events stored in
hydra: :decay objects and interact with it.

For brevity, the user is adivesed to look the doxygen documentation and the examples to learn
what is available and how to deploy it.
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CHAPTER
SEVEN

NUMERICAL INTEGRATION

Numerical integration of multidimensional functions is not easy. Numerical integration algo-
rithms tend to be involved and resource hungry, since they demand a large number of evalua-
tions of the integrand. Indeed, it is common to express the efficiency of a given algorithm in
terms of the minimum required number of integrand evaluations to achieve given precision for
the integral estimation.

The best strategy to perform numerical integration largely depends on the number of dimen-
sions of the integration region and on the features shown by the integrand in this region. Given
the detailed information about integrand behavior is usually not available, the numerical in-
tegration algorithms need to handle situations specializing routines based on broad properties
of the integrand, such as the presence or the absence of narrow peaks, periodicity etc. Highly
specialized algorithms, optimized to handle only a given class of problems tend to be more
efficient, but on the other hand, such approaches are usually not applicable to different class
of problems. In other words, on the field of numerical integration, flexibility usually comes at
expenses of efficiency. The basics of numerical integration, followed by comprehensive list of
references on the subject, can be found in the Wikipedia pages https://en.wikipedia.org/wiki/
Numerical_integration and https://en.wikipedia.org/wiki/Monte_Carlo_integration .

Hydra provides a set of parallelized implementations for generic and popular algorithms to
compute one- and multidimensional numerical integration. Hydra parallelizes the calls to the
integrand in a collection of threads in requested back-end. The algorithms share the same basic
interface, manage resources using RAII idiom and estimate the integral and the associated error.
Hydra also supports analytical integration, which should be implemented through functors.

7.1 Gauss-Kronrod quadrature

See also:

Good didactic introduction on Gauss-Kronrod quadrature can be found in the Wikipedia page
https://en.wikipedia.org/wiki/Gauss-Kronrod_quadrature_formula.

The class hydra: :GaussKronrodQuadrature<NRULE, NBIN, Backend> imple-
ments a non-adaptive procedure which divides the integration interval in NBIN sub-
intervals and applies to each sub-interval a fixed Gauss-Kronrod rule of order NRULE.
hydra: :GaussKronrodQuadrature<NRULE, NBIN, Backend> allows the fastin-
tegration of smooth one-dimensional functions. The code snippet below show how to use this

29


https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Monte_Carlo_integration
https://en.wikipedia.org/wiki/Gauss-Kronrod_quadrature_formula

Hydra Documentation, Release 3.X.Y

quadrature to calculate the integral of a Gaussian function:

#include <hydra/GaussKronrodQuadrature.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

//integration region limits
double min = -6.0;
double max = 6.0;

//Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//wrap the lambda
auto gaussian = hydra::wrap_lambda (

[=] __host___ _ device__ (unsigned int n, doublex x ) {
double m2 = (x[0] — mean )*(x[0] — mean );
double s2 = sigmax*sigma;

double f = exp(-m2/ (2.0 % s2 ))/( sqgrt(2.0%s2%PI));

return f;

// 61- degree quadrature
hydra: :GaussKronrodQuadrature<61l,100, hydra::device::sys_t> GKQ61_
—d(min, max);

auto result = GKQ61_d.Integrate(gaussian);

std::cout << "Result: " << result.first << " +- " << result.
—second <<std::endl

7.2 Self-Adaptive Gauss-Kronrod quadrature

See also:

Good didactic introduction on Gauss-Kronrod quadrature can be found in the Wikipedia page
https://en.wikipedia.org/wiki/Gauss-Kronrod_quadrature_formula.

The class hydra: :GaussKronrodAdaptiveQuadrature<NRULE, NBIN,
Backend> implements a self-adaptive algorithm which initially divides the integration
interval in NBIN sub-intervals and applies to each sub-interval a Gauss-Kronrod rule of order
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NRULE. The algorith selects the interval with larger relative error in the integral estimation
and re-applies the procedure. The algorithme keeps performing this loop until the integram
estimation reaches the requested maximum error level.

hydra: :GaussKronrodQAdaptiveuadrature<NRULE, NBIN, Backend> per-
forms less calls to the integrand and is best suitable for very featured and expensive functions.
The code snippet below show how to use this quadrature to calculate the integral of a Gaussian
function:

#include <hydra/GaussKronrodAdaptiveQuadrature.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

//integration region limits

double min = -6.0;
double max = ©6.0;
double max_error = le-6;

//Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//wrap the lambda

auto gaussian = hydra::wrap_lambda (

[=] __host___ _ _device__ (unsigned int n, doublex x ) {
double m2 = (x[0] — mean )*(x[0] — mean );
double s2 = sigmax*sigma;

double f = exp(m2/(2.0 » s2 ))/( sgqrt(2.0xs2+PI));

return £f;

// 61— degree quadrature
hydra: :GaussKronrodQuadrature<61l,10, hydra::device::sys_t>
—~GKQ61l (min, max, max_error);

auto result

GKQ61.Integrate (gaussian);

std::cout << "Result: " << result.first << " +- " << result.
—second <<std::endl
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7.3 Genz-Malik multidimensional quadrature

This method implements a polynomial interpolatory rule of degree 7, which integrates exactly
all monomials x1 %!, ,%2...x,,% with Y~ k; < 7 and fails to integrate exactly at least one mono-
mial of degree 8. In the [Genz-Malik] multidimensional quadrature, all integration nodes are
inside integration domain and 2 + 2d? + 2d + 1 integrand evaluations are required to integrate
a function in a rectangular hypercube with d dimensions. Due the fast increase in the number
of evaluations as a function of the dimension, this method is most advantageous for problems
with d < 10 and is superseded for high-dimensional integrals by Monte Carlo based methods.
A degree 5 rule embedded in the degree 7 rule is used for error estimation, in a such way that
no additional integrand evaluations are necessary.

The class template hydra: :GenzMalikQuadrature<N, BackendPolicy > imple-
ments a static version of Genz-Malik multidimensional quadrature. This version divides the
"N dimensional integration region in a series of sub-regions, according the configuration,
passed by the user and applies the rule to each sub-region.

The code snippet below shows to use the hydra::GenzMalikQuadrature<N,
BackendPolicy > class to integrate a five-dimensional Gaussian distribution. In this ex-
ample each dimension is divided in 10 segments, resulting in 10° sub-regions.

#include <hydra/GaussKronrodAdaptiveQuadrature.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

//number of dimensions (user can change it)
constexpr size_t N = 5;

//integration region limits
double min|[N]
double max[N]
size_t grid[N

4
7
1;
//5D Gaussian parameters

double mean = 0.0;
double sigma = 1.0;

//set Gaussian parameters and
//integration region limits
for(size_t i=0; i< N; i++){

min[i] = —-6.0;
max[1i] = 6.0;
grid[10] = 10;

//wrap the lambda
auto gaussian = hydra::wrap_lambda( [=] __host__ _ device__
— (unsigned int n, doublex x ) {

(continues on next page)
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4

double g 1.0
0.0;

double f

for(size_t 1i=0; 1i<N; 1i++) {

double m2 = (x[1i] — mean )*(x[1] — mean );
double s2 = sigmaxsigma;

f = exp(-m2/(2.0 82 ))/( sgrt(2.0xs2xPI1));
g *= £

return g;
}) i

hydra: :GenzMalikQuadrature<N, hydra::device::sys_t> GMQ (min, max,
—grid);

auto result = GMQ.Integrate (gaussian);

std::cout << "Result: " << result.first << " +- " << result.
—second <<std::endl

7.4 Plain Monte Carlo

The plain Monte Carlo algorithm samples points randomly from the integration region to esti-
mate the integral and its error. Using this algorithm the estimate of the integral E(f; N) for N
randomly distributed points x_i is given by,

E(f;N)=V < f>=(V/N) Z ien

where V is the volume of the integration region. The error on this estimate o (E; N) is calcu-
lated from the estimated variance of the mean,

N

*(B;N) = (V2/N?) ) (flai)= < [>)

)

For large N this variance decreases asymptotically as Var(f)/N, where Var(f) is the true
variance of the function over the integration region. The error estimate itself should decrease
as o(f)/v N, which implies that to reduce the error by a factor of 10, a 100-fold increase in
the number of sample points is required.

Hydra implements the plain Monte Carlo method in the class hydra::Plain<N,
BackendPolicy>, where N is the number of dimensions and BackendPolicy is the
back-end to parallelize the calculation.

7.4. Plain Monte Carlo 33




Hydra Documentation, Release 3.X.Y

The following code snippet shows to use the hydra: :Plain<N, BackendPolicy >
class to integrate a five-dimensional Gaussian distribution performing 100

#include <hydra/Lambda.h>
#include <hydra/device/System.h>
#include <hydra/Plain.h>

//number of dimensions (user can change it)
constexpr size_t N = 5;

//integration region limits
double min[N];

double max[N];

size_ t ncalls = 1le6;

//5D Gaussian parameters
double mean = 0.0;
double sigma 1.0;

//set Gaussian parameters and
//integration region limits
for(size_t 1i=0; 1< N; i++){
min[i] = -6.0;
max[i] = 6.0;

//wrap the lambda
auto gaussian = hydra::wrap_lambda( [=] _ _host_ _ device_
— (unsigned int n, doublex x ) {

)

double g = 1.0;
double f = 0.0;

for(size_t i=0; 1i<N; 1i++) {

double m2 = (x[1i] — mean )*(x[1] - mean );
double s2 = sigmaxsigma;

f = exp(-m2/(2.0 « s2 ))/( sgqrt(2.0xs2xP1));
g *= £

return g;

}) g
hydra::Plain<N, hydra::device::sys_t> PlainMC (min, max, ncalls);

auto result = PlainMC.Integrate(gaussian);

(continues on next page)
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std::cout << "Result: " << result.first << " +- " << result.
—second <<std::endl

7.5 Self-adaptive importance sampling (Vegas)

Note: from GSL’s Manual, chapter ‘Monte Carlo integration’ https://www.gnu.org/software/
gsl/manual/html_node/VEGAS .html :

The VEGAS algorithm of [Lepage] is based on importance sampling. It samples
points from the probability distribution described by the function |f/|, so that the
points are concentrated in the regions that make the largest contribution to the
integral.

In general, if the Monte Carlo integral of f is sampled with points distributed ac-
cording to a probability distribution described by the function g, we obtain an esti-
mate E,(f; N),

Ey(f;N) = E(f/g; N)
with a corresponding variance,
Vary(f; N) = Var(f/g;N).

If the probability distribution is chosen as g = | f|/I(|f|) then it can be shown that
the variance {Var}_g(f; N) vanishes, and the error in the estimate will be zero. In
practice it is not possible to sample from the exact distribution g for an arbitrary
function, so importance sampling algorithms aim to produce efficient approxima-
tions to the desired distribution.

The VEGAS algorithm approximates the exact distribution by making a number
of passes over the integration region while histogramming the function f. Each
histogram is used to define a sampling distribution for the next pass. Asymptot-
ically this procedure converges to the desired distribution. In order to avoid the
number of histogram bins growing like K”d the probability distribution is approx-
imated by a separable function: g(z1, za,...) = ¢1(x1)g2(x2)... so that the number
of bins required is only /(. This is equivalent to locating the peaks of the function
from the projections of the integrand onto the coordinate axes. The efficiency of
VEGAS depends on the validity of this assumption. It is most efficient when the
peaks of the integrand are well-localized. If an integrand can be rewritten in a form
which is approximately separable this will increase the efficiency of integration
with VEGAS.

The implementation of VEGAS in Hydra parallelizes the Monte Carlo generation, the
function calls and the computing of the result of each iteration. = The algorithm
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is implemented in the hydra::Vegas<N, BackendPolicy>.

The auxiliary class

hydra: :VegasState<N, BackendPolicy> manages the resources and configuration
necessary to perform the integration. The code snippet below shows how to use the VEGAS
algorithm to integrate five-dimensional Gaussian distribution:

#include <hydra/Vegas.h>
#include <hydra/Lambda.h>
#include <hydra/device/System.h>

//number of dimensions
constexpr size_t N = 5;

//integration region limits

double min[N];
double max[N];
size t ncalls = 1le5;

//5D Gaussian parameters
double mean = 0.0;
double sigma = 1.0;

//set Gaussian parameters and
//integration region limits

for(size_t i=0; i< N; i++){
min[i] = —-6.0;
max[1i] = 6.0;

//wrap the lambda
auto gaussian =

[=] __host_ _ device_
—{
double g = 1.0;
double f = 0.0;
for (size_t 1i=0; 1i<N;j;
double m2 =
—mean );
double s2 =
£ =
—~0%s2+PI1));
g *= £;

return g;

(user can change 1it)

hydra: :wrap_lambda (
(unsigned int n,

exp(—m2/ (2.0 *« s2 ))/( sgrt(2.

doublex x )

1+4) {
(x[1] - mean )*(x[1i] -
sigmaxsigma;

(continues on next page)
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(continued from previous page)

)i

//vegas integrator
hydra: :Vegas<N, hydra::device::sys_t> Vegas (min,
—ncalls);

//configuration
Vegas.GetState
Vegas.GetState
Vegas.GetState
Vegas.GetState

() .SetVerbose (-2);

(

(

(
Vegas.GetState (

(

(

(

.SetAlpha(1.5);
.SetIterations( iterations );
.SetUseRelativeError (1) ;
.SetMaxError ( max_error );
.SetCalls( calls );
.SetTrainingCalls( calls/10 );
.SetTrainingIterations (2);

)
)
)
)
)
Vegas.GetState ()
Vegas.GetState ()
Vegas.GetState ()
auto result = Vegas_d.Integrate (gaussian);
std::cout << "Result: " << result.first << " +-
—result.second <<std::endl

max,

<<

—

7.6 Implementing analytical integration

Hydra supports analysical integration as well. To integrate functions analytically the user
needs to implement the integral formula in a suitable functor Functor deriving from the

class hydra: : Integrator<Functor>. Analytical integration is not parallelized.

7.6. Implementing analytical integration
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CHAPTER
EIGHT

PARAMETER ESTIMATION

The best Minuit description can be found on it’s own user’s manual [1] :

Minuit is conceived as a tool to find the minimum value of a multi-parameter func-
tion, usually called “FCN”, and analyze the shape of this function around the min-
imum. The principal application is foreseen for statistical analysis, working on
chi-square or log-likelihood functions, to compute the best-fit parameter values
and uncertain- ties, including correlations between the parameters. It is especially
suited to handle difficult problems, including those which may require guidance in
order to find the correct solution.

—Minuit User’s Guide, Fred James and Matthias Winkler, June 16, 2004 -
CERN, Geneva.

Hydra implements an interface to Minuit2 that parallelizes the FCN calculation. This dramat-
ically accelerates the calculations over large data-sets. Hydra normalizes the pdfs on-the-fly
using analytical or numerical integration algorithms provided by the framework and handles
data using iterators.

Hydra also provides an implementation of SPlot [2], a very popular technique for statistical
unfolding of data distributions.

8.1 Defining PDFs

In Hydra, PDFs are represented by the hydra: :Pdf<Functor, Integrator> class
template and is defined binding a positive defined functor and a integrator. PDFs can be con-
veniently built using the template function hydra: :make_pdf ( pdf, integrator).
The snippet below shows how wrap a parametric lambda representing a Gaussian and bind it to
a Gauss-Kronrod integrator, to build a pdf object:

#include <hydra/device/System.h>
#include <hydra/Lambda.h>

#include <hydra/Pdf.h>

#include <hydra/Parameter.h>

#include <hydra/GaussKronrodQuadrature.h>

(continues on next page)
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std::string Mean ("Mean"); // mean of gaussian
std::string Sigma ("Sigma"); // sigma of gaussian

hydra: :Parameter mean_p = hydra::Parameter::Create()
.Name (Mean)
.Value (0.5)
.Error(0.0001)
.Limits(-1.0, 1.0);

hydra::Parameter sigma_p = hydra::Parameter::Create ()
.Name (Sigma)
.Value (0.5)
.Error (0.0001)
.Limits(0.01, 1.5);

//wrap a parametric lambda
auto gaussian = hydra::wrap_lambda( [=] __host___ _ device__,
— (unsigned int npar,
const hydra::Parameter» params, unsigned int narg, doublex
=X )

double m2 = (x[0] - params|[O

1)+ (x[0] - params[O0] );
double s2 params[1]xparams[1];

return exp(—m2/ (2.0 * s2 ))/( sqrt(2.0%xs2+PI));
}, mean_p, sigma_p);

double min = -5.0; double max = 5.0;
//numerical integral to normalize the pdf
hydra: :GaussKronrodQuadrature<61l,100, hydra::device::sys_t>_,

—GKQ61 (min, max);

//build the PDF
auto PDF = hydra::make_pdf (gaussian, GKQ61l );

It is also possible to represent models composed by the sum of two or more PDFs
using the class templates hydra::PDFSumExtendable<Pdfl, Pdf2,...> and
hydra: :PDFSumNonExtendabl<Pdfl, Pdf2,...> . Given N normalized pdfs F;
, theses classes define objects representing the sum

N
Ft = Z Cc; X E
The coefficients c¢; can represent fractions or yields. If the number of -coeffi-

cients is equal to the number of PDFs, the coefficients are interpreted as yields and

40 Chapter 8. Parameter estimation



Hydra Documentation, Release 3.X.Y

hydra: :PDFSumExtendable<Pdfl, Pdf2,...> is used. If the number of coeffi-
cients is (N — 1), the class template hydra: : PDFSumNonExtendabl<Pdfl, Pdf2,
. . .> 1s used and the coefficients are interpreted as fractions defined in the interval [0,1]. The

coefficient of the last term is calculated as cy = 1 — ZEN_U Ci .

hydra: :PDFSumExtendable<Pdfl, Pdf2,...> and
hydra: :PDFSumNonExtendabl<Pdfl, Pdf2,...> objects can be conveniently
created using the function template hydra: :add_pdfs(...). The code snippet below

continues the example and defines a new PDF representing an exponential distribution and add
it to the previous Gaussian PDF to build a extended model, which can be used to predict the
yields:

//tau of the exponential
std::string Tau("Tau");
hydra: :Parameter tau_p = hydra::Parameter::Create()
.Name (Tau)
.Value (1.0)
.Error (0.0001)
.Limits(-2.0, 2.0);

//wrap a parametric lambda
auto exponential = hydra::wrap_lambda( [=] __host__ _ device__ |
— (unsigned int npar,

const hydra::Parameter* params,unsigned int narg, doublex x

=) {

double tau = params[0];
return exp( —(x[0]-min) xtau);

b, tau_p );

// build the PDF
auto PDF = hydra::make_pdf ( exponential, GKQ61l );

//yields

std::string NG ("N_Gauss");

std::string NE ("N_Exp");

hydra: :Parameter NG_p (NG , 1le4, 100.0, 1000 , 2e4) ;
hydra: :Parameter NE_p(NE , 1led4, 100.0, 1000 , 2e4) ;

//add the pdfs
auto model = hydra::add_pdfs ({NG_p, NE_p}, gaussian, exponential );

The user can get a reference to one of the component PDFs using the method PDF (
hydra::placeholder ). This is useful, for example, to change the state of a com-
ponent PDF “in place”. Same operation can be performed for coeficients using the method
Coefficient ( unsigned int ) :

8.1. Defining PDFs 41
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#include<hydra/Placeholders.h>

using namespace hydra::placeholders;

//change the mean of the Gaussian to 2.0
model .PDF( _0 ) .SetParameter (0, 2.0);

//set Gaussian coeficient to 1.5e4
model.Coefficient (0) .SetValue (1l.5e4);

The Hydra classes representing PDFs are not dumb arithmetic beasts. These classes are lazy
and implements a series of optimizations in order to forward to the thread collection only code
that need effectively be evaluated. In particular, functor normalization is cached in a such way
that only new parameters settings will trigger the calculation of integrals.

8.2 Defining FCNs and invoking the ROOT: :Minuit2 in-
terfaces

In general, a FCN is defined binding a PDF to the data the PDF is supposed to de-
scribe. Hydra implements classes and interfaces to allow the definition of FCNs suit-
able to perform maximum likelihood fits on unbinned and binned datasets. The differ-
ent use cases for Likelihood FCNs are covered by the specialization of the class template
hydra: :LogLikelihoodFCN<PDF, Iterator, Extensions...>.

Objects representing likelithood FCNs can be conveniently instantiated using the func-
tion template  hydra::make_likelihood_fcn(data_begin, data_end ,
PDF) and hydra::make_likelihood_fcn (data_begin, data_end ,
weights_begin, PDF), where data_begin, data_end and weights_begin
are iterators pointing to the dataset and the weights or bin-contents.

#include <hydra/LogLikelihoodFCN.h>

// get the fcn...

auto fcn = hydra: :make_loglikehood_fcn (dataset.begin(), dataset.
—~end (), model);

// and invoke Migrad minimizer from Minuit2

MnMigrad migrad(fcn, fcn.GetParameters () .GetMnState(),
—MnStrategy(2));
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8.3 sPlots

The sPlot technique is used to unfold the contributions of different sources to the data sample
in a given variable. The sPlot tool applies in the context of a Likelihood fit which needs to be
performed on the data sample to determine the yields corresponding to the various sources.

Hydra handles sPlots using the class hydra: :SP1ot<PDF1, PDF2,PDFs...> where
PDF1, PDF2 and PDFs. .. are the probability density functions describing the populations
contributing to the dataset as modeled in a given variable referred as discriminating vari-
able. The other variables of interest, present in the dataset are referred as control variables
and are statistically unfolded using the so called sweights. For each entry in the dataset,
hydra::SPlot<PDF1, PDF2,PDFs...> calculates a set of weights, where each one
corresponds to a data source described by the corresponding PDF. It is responsibility of the
user to allocate memory to store the sweights.

The weights are calculated invoking the method hydra: :SPlot: :Generate, which re-
turns the covariant matrix among the yields in the data sample.

#include <hydra/SPlot.h>

//splot 2 components (gaussian + exponential )

//hold weights

hydra::multiarray<2, double, hydra::device::sys_t> sweigts(dataset.
—size());

//create splot

auto splot = hydra::make_splot( fcn.GetPDF () );
auto covarm = splot.Generate( dataset.begin(), dataset.end(),
—swelgts.begin());

8.3. sPlots 43
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